“Physics is the liberal arts education for a technological society.”—Joseph Pimbley

Participation in research and proficiency in the main subject areas of physics are the twin goals of the physics program. The major program is designed to develop competency in quantum theory, electromagnetism and optics, thermodynamics and statistical mechanics, classical dynamics, and condensed-matter physics. Preparation in mathematical and computational methods is an integral part of the program.

Interested and qualified students may pursue several opportunities for advanced work, including graduate courses and participation with graduate students and faculty in research. The department encourages its students to “do physics” at the earliest opportunity by making arrangements to work with one of the research groups or by arranging an independent research tutorial. Research may be experimental or theoretical and may, but need not, result in a senior honors thesis. Most majors who intend to write a thesis begin research no later than the junior year and continue it through the summer into the senior year. Current research interests include quantum computing, single molecule biophysics, soft condensed-matter physics, charge transport in photovoltaic devices, fluid dynamics, laser plasmas, spectroscopy, collision studies involving excited atoms and molecules, and wave transport in complex media.

Many students also take advantage of Wesleyan’s computing facilities in their research or coursework. The University has a large computer cluster available to all who are doing research.

Each semester, opportunities exist to serve as a teaching apprentice, course assistant, or department assistant in one of the introductory or intermediate-level courses. Many physics majors have found that this is a stimulating way to learn more about the fundamentals of the discipline and how to teach them. The Cady Lounge in the department serves as a focus for the major by providing a place where students can study and discuss physics. There is also a study room where students in the introductory courses can come to get help and to work together. Students are encouraged to attend the weekly colloquium series and to participate in the weekly research seminars in atomic and molecular physics, chemical physics, condensed-matter physics, and theory. The Society of Physics Students is also a great resource for sharing ideas and questions with like-minded students.

FACULTY

Reinhold Blumel
PHD, Technical University Munich
Charlotte Augusta Ayres Professor of Physics; Professor of Physics; Co-Coordinator, Informatics and Modeling

Lutz Hüwel
PHD, University of Gottingen
Professor of Physics

Tsampikos Kottos
BA, University of Crete; MS, University of Crete; PHD, University of Crete
Lauren B. Dachs Professor of Science and Society; Professor of Physics; Professor, Integrative Sciences; Professor, Mathematics

George Mathew Paily
MSC, Indian Institute of Technology; PHD, Pennsylvania State University

Meng-ju Renee Sher
BA, Wesleyan University; MA, Harvard University; PHD, Harvard University
Assistant Professor of Physics; Assistant Professor, Integrative Sciences; Assistant Professor, Environmental Studies

Francis W. Starr
BS, Carnegie Mellon University; MS, Boston University; PHD, Boston University
Foss Professor of Physics; Professor of Physics; Chair, Physics; Associate Director, College of Design and Engineering Studies; Professor, Integrative Sciences; Professor, Design and Engineering Studies; Professor, Molecular Biology and Biochemistry

Brian A. Stewart
BS, Stanford University; PHD, Massachusetts Institute of Technology
Professor of Physics; Professor, Environmental Studies; Professor, Integrative Sciences

Min-Feng Tu
BS, National Tsing Hua University; MS, California Institute Tech; PHD, California Institute Tech
Assistant Professor of the Practice in Physics

Greg A. Voth
BS, Wheaton College; MS, Cornell University; PHD, Cornell University
Professor of Physics; Associate Director, College of Design and Engineering Studies; Professor, Design and Engineering Studies; Professor, Integrative Sciences

AFFILIATED FACULTY

Candice M. Eton
BA, New York University; BFA, New York University; PHD, Harvard University
Assistant Professor of Molecular Biology and Biochemistry; Assistant Professor, Integrative Sciences; Assistant Professor, Physics; Assistant Professor, Chemistry

VISITING FACULTY

Michael Lawrence Davino
BS, University of Connecticut
Visiting Instructor of Physics

Ulrich Kuhl
PHD, Philippus Universitat Marburg
Visiting Scholar in Physics

Arkady Kurnosov
PHD, Tulane University
Visiting Assistant Professor of Physics

Thomas J. Morgan
BA, Montana State University; BS, Montana State University; MAA, Wesleyan University; MSC, University of California, Berkeley; PHD, University of California, Berkeley
Foss Professor of Physics, Emeritus; Research Professor in Physics

FACULTY

Reinhold Blumel
PHD, Technical University Munich
Charlotte Augusta Ayres Professor of Physics; Professor of Physics; Co-Coordinator, Informatics and Modeling

Lutz Hüwel
PHD, University of Gottingen
Professor of Physics

Tsampikos Kottos
BA, University of Crete; MS, University of Crete; PHD, University of Crete
Lauren B. Dachs Professor of Science and Society; Professor of Physics; Professor, Integrative Sciences; Professor, Mathematics

George Mathew Paily
MSC, Indian Institute of Technology; PHD, Pennsylvania State University

Meng-ju Renee Sher
BA, Wesleyan University; MA, Harvard University; PHD, Harvard University
Assistant Professor of Physics; Assistant Professor, Integrative Sciences; Assistant Professor, Environmental Studies

Francis W. Starr
BS, Carnegie Mellon University; MS, Boston University; PHD, Boston University
Foss Professor of Physics; Professor of Physics; Chair, Physics; Associate Director, College of Design and Engineering Studies; Professor, Integrative Sciences; Professor, Design and Engineering Studies; Professor, Molecular Biology and Biochemistry

Brian A. Stewart
BS, Stanford University; PHD, Massachusetts Institute of Technology
Professor of Physics; Professor, Environmental Studies; Professor, Integrative Sciences

Min-Feng Tu
BS, National Tsing Hua University; MS, California Institute Tech; PHD, California Institute Tech
Assistant Professor of the Practice in Physics

Greg A. Voth
BS, Wheaton College; MS, Cornell University; PHD, Cornell University
Professor of Physics; Associate Director, College of Design and Engineering Studies; Professor, Design and Engineering Studies; Professor, Integrative Sciences

AFFILIATED FACULTY

Candice M. Eton
BA, New York University; BFA, New York University; PHD, Harvard University
Assistant Professor of Molecular Biology and Biochemistry; Assistant Professor, Integrative Sciences; Assistant Professor, Physics; Assistant Professor, Chemistry

VISITING FACULTY

Michael Lawrence Davino
BS, University of Connecticut
Visiting Instructor of Physics

Ulrich Kuhl
PHD, Philippus Universitat Marburg
Visiting Scholar in Physics

Arkady Kurnosov
PHD, Tulane University
Visiting Assistant Professor of Physics

Thomas J. Morgan
BA, Montana State University; BS, Montana State University; MAA, Wesleyan University; MSC, University of California, Berkeley; PHD, University of California, Berkeley
Foss Professor of Physics, Emeritus; Research Professor in Physics

EMERITI

Ralph F. Baierlein
BA, Harvard University; MAA, Wesleyan University; PHD, Princeton University
Charlotte Ayres Professor of Physics, Emeritus

Fred M. Ellis
BS, University of Massachusetts Amherst; MAA, Wesleyan University; PHD, University of Massachusetts Amherst
Professor of Physics, Emeritus

Richard W. Lindquist
BS, Worcester Poly Institute; MA, Princeton University; MAA, Wesleyan University; PHD, Princeton University
Professor of Physics, Emeritus

Thomas J. Morgan
BA, Montana State University; BS, Montana State University; MAA, Wesleyan University; MSC, University of California, Berkeley; PHD, University of California, Berkeley
Foss Professor of Physics, Emeritus; Research Professor in Physics

Robert J. Rollefson
BA, University of Wisconsin at Madison; MAA, Wesleyan University; PHD, Cornell University
Professor of Physics, Emeritus

William L. Trousdale
Associate Professor of Physics, Emeritus

DEPARTMENTAL ADVISING EXPERTS

- Lutz Hüwel and George Paily, Class of 2023
- Francis Starr and Min-Feng Tu, Class of 2024
- Undergraduate Physics Major (https://catalog.wesleyan.edu/departments/phys/ugrd-phys/)
- Physics Minor (https://catalog.wesleyan.edu/minors/ugrd-phys-mn/)
- Doctor of Philosophy in Physics (https://catalog.wesleyan.edu/departments/phys/grad-phys/)
- Master of Arts in Physics (https://catalog.wesleyan.edu/departments/phys/grad-phys-ma/)

PHYS105 Calderwood Seminar in Public Writing: Radical Sustainability
The environmental challenges widely known and discussed for the past 50 years not only remain: they have grown. Maybe we haven’t worked hard enough, or maybe we’ve been going about sustainability the wrong way. Radical sustainability explores the intersection of these now-critical challenges—extinction, climate change, and many others—as well as the physical and social constraints on action to address them. Our aim is to identify the pressure points for an effective response within the geo-ecosystem and the human systems embedded within it, and then to focus on making change through writing.

Calderwood Seminars in Public Writing are writing-intensive courses that emphasize writing for general audiences about expert subject matters. Students work with their peers to hone the skills that enable them to translate scientific understanding of sustainability for the public. Using an intensive author/editor model, students will explore public communication in a variety of forms, including news articles, radio features, and editorials. The goal is prose that is polished and persuasive. Course readings are chosen to highlight the physical nature of human systems as they relate to natural systems. While there is no prerequisite, the course is intended for upper-level students with experience in environmental and sustainability studies.

PHYS107 Life in the Cell from a Molecule’s Perspective
What does DNA look like when it is not condensed into chromosomes? How do partners in molecular processes find each other? If a molecular motor “walks,” how does it take a step? We will explore these major topics in molecular biophysics by discussing primary scientific literature. Emphasis will be placed on revealing the ways in which our understanding of biological processes can be improved by understanding the underlying physics. Students should have a broad high school science background, familiarity with quantitative and algebraic concepts, and a desire to incorporate quantitative thinking into verbal discourse. Writing is a core element of the course.

Offering: Host
Grading: OPT
Credits: 1.00
Gen Ed Area: NSM-PHYS
Identical With: ENVS235, WRCT235
Prereq: None

PHYS110 Introductory Physics I
This course, along with PHYS 112 in the spring semester, is an introduction to the fundamental principles of physics. Employing trigonometry and algebra the goal is to provide tools for the quantitative understanding of a wide variety of phenomena, with many examples taken from the life sciences. The lab PHYS 121 is recommended. Since algebra is an important prerequisite for PHYS 111, we strongly recommend that all students take a diagnostic test prior to the start of the course. It can be found at https://www.khanacademy.org/math/algebra/test/subject-challenge?modal=1

Taking this “Course Challenge” will take 30-45 minutes and leave you with a good idea of where your algebra skills might need review. Follow-up guided lessons can be chosen at this website.

Offering: Host
Grading: OPT
Credits: 1.00
Gen Ed Area: NSM-PHYS
Prereq: None

PHYS111 Introductory Physics II
This is the second of two non-calculus courses covering fundamental principles of physics. The emphasis is on developing a conceptual understanding of the physical processes that govern our universe. Proficiency in elementary algebra, vector algebra, trigonometry, and arithmetic is required. The lab PHYS122 is recommended.

Offering: Host
Grading: OPT
Credits: 1.00
Gen Ed Area: NSM-PHYS
Prereq: PHYS111

PHYS113 General Physics I
This course is the first term of a general physics course with calculus, recommended for students interested in majoring in the sciences. With the focus on Newtonian dynamics, PHYS 113 seeks to develop both conceptual understanding and the ability to use this knowledge to obtain quantitative predictions of how the universe works. Through a collaborative and interactive classroom experience, students develop problem-solving skills and a
mathematical description of mechanics. The associated lab, PHYS123, is highly recommended.

PHYS113 and PHYS116 are part of a sequence of courses that lead into the physics major. PHYS113 is a pre-requisite for PHYS116; therefore, students must take them in sequence.

Offering: Host
Grading: OPT
Credits: 1.00
Gen Ed Area: NSM-PHYS
Prereq: None

PHYS116 General Physics II
This course is the second term of a general physics course with calculus, recommended for students interested in majoring in the sciences. The focus is on the physics of charged particles, including an introduction to the concepts of electric and magnetic fields. Students will develop both conceptual understanding of how charged particles give rise to both electricity and magnetism and the ability to use this knowledge to quantitatively describe the behavior of these particles in a variety of contexts, including electrical devices. Through a collaborative and interactive classroom experience, students develop problem-solving skills and a mathematical description of electricity and magnetism. The associated lab PHYS124 is highly recommended; any student wishing to major in physics should enroll in PHYS124, since it is a requirement for the major.

Offering: Host
Grading: OPT
Credits: 1.00
Gen Ed Area: NSM-PHYS
Prereq: PHYS113

PHYS121 Introductory Physics Laboratory I
This laboratory course provides experience with phenomena discussed in PHYS111 lectures. While this course is not required by the Physics Department, students planning to enter the health professions should be aware that a year of physics WITH LABORATORY is usually required for admission. Consult your major advisor if you are in doubt about similar requirements in your field. Each laboratory is limited to 16.

Offering: Host
Grading: Cr/U
Credits: 0.50
Gen Ed Area: NSM-PHYS
Prereq: PHYS113

PHYS122 Introductory Physics Laboratory II
This course provides laboratory experiences for students taking PHYS112.

This course provides laboratory experiences for students taking PHYS112.

Offering: Host
Grading: Cr/U
Credits: 0.50
Gen Ed Area: NSM-PHYS
Prereq: None

PHYS123 General Physics Laboratory I
This laboratory course provides experience with phenomena discussed in PHYS113 lecture, integrating calculations with the experiments. Students will get hands-on experience with physical systems that demonstrate the principles being studied in PHYS113. Hands-on experience helps in developing physical intuition, a deeper understanding of the course material, and the world around us. The emphasis in this course is on experimental technique and the proper identification, appreciation, and handling of experimental error.

Offering: Host
Grading: Cr/U
Credits: 0.50
Gen Ed Area: NSM-PHYS
Prereq: None

PHYS124 General Physics Laboratory II
This laboratory course is designed to be taken in conjunction with PHYS116. Students will get hands-on experience with physical systems that demonstrate the principles being studied in PHYS116. Hands-on experience helps in developing physical intuition, a deeper understanding of the course material, and the world around us. The emphasis in this course is on experimental technique and the proper identification, appreciation, and handling of experimental error.

Offering: Host
Grading: Cr/U
Credits: 0.50
Gen Ed Area: NSM-PHYS
Prereq: PHYS113 OR PHYS123

PHYS170 Introduction to Mechanical Design and Engineering
This course will provide a hands-on introduction to design and engineering. Students will engage in individual and team projects in a studio environment where we seek to develop a shared practice and understanding of the engineering design process. We will study biological organisms to find inspiration for design of hoppers, swimmers, and climbers. Students will build skills using computer-aided design (CAD) software and using tools for fabrication and prototyping including laser cutting and 3D printing. We will also hone skills in identifying which scientific and engineering principles need to be understood to achieve design goals.

Offering: Crosslisting
Grading: Cr/U
Credits: 1.00
Gen Ed Area: NSM-CIS
Identical With: IDEA170, CIS170
Prereq: None

PHYS170Z Introduction to Design and Engineering
This course will provide a hands-on introduction to design and engineering. Students will engage in individual and team projects in a studio environment where we seek to develop a shared practice and understanding of the engineering design process. We will study biological organisms to find inspiration for design of hoppers, swimmers, and climbers. Students will build skills using computer-aided design (CAD) software and using tools for fabrication and prototyping including laser cutting and 3D printing. We will also hone skills in identifying which scientific and engineering principles need to be understood to achieve design goals.

Offering: Crosslisting
Grading: OPT
Credits: 1.00
Gen Ed Area: NSM-CIS
Identical With: IDEA170Z, CIS170Z
Prereq: None

PHYS207 Introduction to Biophysics
This course will introduce students to major topics in biophysics with an emphasis on the statistical physics of biological systems at the microscopic or molecular level. Topics covered will include molecular motors, self-assembly, and single-molecule manipulation. Students will learn how physical arguments and reasoning can provide significant insight into the design and function of biological systems. While this course is geared toward students who have had a full year of calculus-based physics, relevant concepts in biology and chemistry will be introduced as needed. No detailed knowledge of biology or chemistry beyond the high-school level is required for this course.

Offering: Crosslisting
PHYS210 Special Relativity

This calculus-based half-credit, half-semester introduction to Einstein's theory of special relativity promotes both a qualitative understanding of the subject and a quantitative problem-solving approach.

Offering: Host

Grading: A-F

Credits: 1.00

Gen Ed Area: NSM-PHYS

Prereq: PHYS116

Prereq: (PHYS213 AND MATH221) OR (PHYS213 AND MATH223)

PHYS213 Waves and Oscillations

The properties of periodic motion recur in many areas of physics, including mechanics, quantum physics, and electricity and magnetism. The ubiquity of oscillatory motion in biological and chemical systems, as well as engineering, provides interdisciplinary importance for developing the formal description of periodic motion. We will explore the physical principles and fundamental mathematics related to periodic motions. Topics will include damped and forced harmonic motion, normal modes, the wave equation, Fourier series and integrals, and complex analysis. Principles and techniques developed in this course are central to many subsequent courses, particularly Quantum Mechanics (PHYS214, PHYS315), Classical Dynamics (PHYS313), and Electricity and Magnetism (PHYS324). An important component of this course is to develop the ability to use mathematical software packages to graph expressions, solve equations, and obtain numerical solutions to differential equations.

Offering: Host

Grading: OPT

Credits: 1.00

Gen Ed Area: NSM-PHYS

Prereq: PHYS116

普 (PHYS213 AND MATH221 OR PHYS111 OR PHYS113)

PHYS214 Quantum Mechanics I

This course provides an introduction to wave and matrix mechanics, including wave-particle duality, probability amplitudes and state vectors, eigenvalue problems, and the operator formulation of quantum mechanics.

Offering: Host

Grading: OPT

Credits: 1.00

Gen Ed Area: NSM-PHYS

Prereq: PHYS116

Prereq: (PHYS213 AND MATH221) OR (PHYS213 AND MATH223)

PHYS215 Special Relativity

This calculus-based half-credit, half-semester introduction to Einstein's theory of special relativity promotes both a qualitative understanding of the subject and a quantitative problem-solving approach.

Offering: Host

Grading: A-F

Credits: 0.50

Gen Ed Area: NSM-PHYS

Prereq: None

PHYS217 Nonlinear Dynamics and Chaos

The techniques of nonlinear dynamics and chaos have been proven useful for a variety of disciplines, ranging from astrophysics to population dynamics. This course provides an introduction with applications.

Offering: Host

Grading: A-F

Credits: 1.00

Gen Ed Area: NSM-PHYS

Prereq: PHYS113, PHYS116, AND PHYS213

PHYS219 Introduction to Contemporary Physics

This course examines the foundations of modern physics, including special relativity, the building blocks of matter, the fundamental interactions and gravity, and recent views of the universe such as entanglement, supersymmetry, strings, and dark matter and dark energy.

Offering: Host

Grading: Cr/U

Credits: 0.50

Gen Ed Area: NSM-PHYS

Prereq: (PHYS113 AND PHYS116)

PHYS311 Classical Dynamics

This is a course in classical mechanics at the intermediate level that utilizes problem solving instruction and learning. It approaches Newtonian mechanics from a more advanced point of view and introduces Lagrangian and Hamiltonian dynamics.

Offering: Host

Grading: OPT

Credits: 1.00

Gen Ed Area: NSM-PHYS

Identical With: PHYS113

Prereq: (PHYS213 AND MATH221 AND MATH222 AND MATH122)

PHYS313 Quantum Mechanics II

This course will expand the formalism of quantum mechanics to include spin and angular momentum in three dimensions. The quantum theory of identical particles will be developed and applied to multi-electron atoms.

Offering: Host

Grading: A-F

Credits: 1.00

Gen Ed Area: NSM-PHYS

Identical With: PHYS115

Prereq: (PHYS214 AND MATH223) OR (PHYS214 AND MATH221)

PHYS316 Thermal and Statistical Physics

Thermodynamics and statistical mechanics are pillars of physics. Thermodynamics provides a framework through which we can understand the rules for the conversion of energy and matter from one form to another. As we will learn, every transfer of energy results in the conversion of some energy into an unusable form. Using the tools of thermodynamics, we can establish limits for the amount of useful work that can be extracted from any process. These limits have important implications for the quest to achieve sustainability in our use of energy and materials. As we learn about thermodynamics, we will spend some time exploring this real-world application of the material covered.

Likewise, statistical mechanics provides us with a set of tools for understanding how the behavior of individual atoms and molecules impacts the properties and behavior of materials that can be observed in our daily lives. Our approach to this material differs from many previous physics courses and requires a mixture of statistical and counting skills, coupled with physical intuition for the nature of matter. In addition to explaining phase transitions, critical phenomena, and the statistical nature of fermions and bosons, the tools of statistical mechanics are essential for understanding phenomena like evaporative cooling and the
PHYS322 Physics Colloquium with Journal Club I

Students will review and discuss materials in preparation for attending the physics colloquium. Attendance at the colloquium is also required.

Offering: Host
Grading: OPT
Credits: 1.00
Gen Ed Area: NSM-PHYS
Identical With: PHYS516
Prereq: PHYS214

PHYS317 Molecular Biophysics Journal Club I

This course includes presentation and active discussion of a series of current research articles in the field of molecular biophysics and biophysical chemistry from journals including but not limited to the Biophysical Journal, Biopolymers, Current Opinion in Structural Biology, Journal of Biomolecular Structure and Dynamics, and the Annual Review of Molecular Biophysics and Biomolecular Structure.

Offering: Crosslisting
Grading: Cr/U
Credits: 0.50
Gen Ed Area: NSM-CHEM
Identical With: MB&B507, MB&B307, CHEM507, CHEM307, PHYS517
Prereq: None

PHYS318 Molecular Biophysics Journal Club II

Offering: Crosslisting
Grading: Cr/U
Credits: 0.50
Gen Ed Area: NSM-CHEM
Identical With: MB&B508, MB&B308, CHEM508, PHYS518, CHEM308
Prereq: None

PHYS320 Introduction to Tensors and General Relativity

Students will learn the basics of physics in curved spacetime and the use of tensors to describe physical quantities and laws. Geodesics in curved spacetimes and how space and time change in General Relativity will be a particular focus.

Offering: Host
Grading: OPT
Credits: 1.00
Gen Ed Area: NSM-PHYS
Prereq: PHYS215

PHYS321 Physics Colloquium with Journal Club I

Students will review and discuss materials in preparation for attending the physics colloquium. Attendance at the colloquium is also required.

Offering: Host
Grading: Cr/U
Credits: 0.50
Gen Ed Area: None
Prereq: None

PHYS322 Physics Colloquium with Journal Club II

Students will review and discuss materials in preparation for attending the physics colloquium. Attendance at the colloquium is also required.

Offering: Host
Grading: Cr/U
Credits: 0.50
Gen Ed Area: None
Prereq: None

PHYS324 Electricity and Magnetism

This course covers the classical field theory of electricity and magnetism. The core of the course covers electrostatics and magnetostatics with emphasis on both physical insight and the partial differential equations that describe these fields. We then cover electrodynamics to complete Maxwell’s equations and to derive the elementary properties of electromagnetic radiation.

Offering: Host
Grading: OPT
Credits: 1.00
Gen Ed Area: NSM-PHYS
Identical With: PHYS524
Prereq: PHYS116 AND PHYS124 AND PHYS213 AND MATH222

PHYS339 Molecular and Cellular Biophysics

This course is an integrated consideration of the biophysics and biophysical chemistry of biological systems from molecules to cells. The objective is to develop a critical sense of the quantitative data currently being obtained from microscopy to spectroscopy, considering both ensemble and single-molecule experiments, and to gain familiarity and facility with interpretation using mathematical and computational models. Biological systems are inherently complex, and some form of modeling is always involved in developing an explanation of how they work. However, these models typically involve only a few basic constructs (simple harmonic motion, ideal fluids, two-state Ising models, random walks, electrostatic interactions, classical dynamics, rate equations, QM energy levels, distribution functions, and network analysis) and only elementary aspects of linear algebra, calculus, differential equations, and statistics. This course deals with how these constructs are integrated in the framework of Boltzmann statistical mechanics to formulate mathematical models of biological phenomena, how these models are validated and refined, and how they are used to form explanations and make testable predictions. Model systems to be considered include the nucleosome, the ribosome, membrane dynamics and ion channels, molecular devices and motors, prototype signal transduction systems, and regulatory processes. This course is suitable for physics and chemistry students who wish to learn about biological applications and for molecular and cellular biology students to develop skills with quantitative physicochemical modes of inquiry applied to the life sciences.

Offering: Crosslisting
Grading: A-F
Credits: 1.00
Gen Ed Area: NSM-CHEM
Identical With: MB&B309, CHEM309, CHEM509, MB&B509, PHYS539
Prereq: None

PHYS340 Computational Physics

This course introduces students to numerical techniques used in modern computational physics. Using the UNIX operating system and its support software as our programming environment, we will write code using the c programming language to implement the basic numerical techniques necessary for solving the majority of physics problems that do not have an analytical solution. Previous experience with UNIX/c is useful but not required.

Offering: Host
Grading: OPT
Credits: 0.50
Gen Ed Area: NSM-PHYS
Identical With: MB&B309, CHEM309, CHEM509, MB&B509, PHYS539
Prereq: None

PHYS342 Experimental Optics

This is an experimental course in optics, including lenses, lens combinations, interference and diffraction, interferometry, and spectrometry.

Offering: Host
Grading: A-F
Credits: 0.50
Gen Ed Area: NSM-PHYS
Identical With: PHYS542
Prereq: (PHYS116 AND PHYS213)

PHYS345 Electronics Lab
This laboratory course covers the fundamentals of analog and digital electronics: passive DC and AC circuits, linear transistor and integrated circuits, and digital integrated circuits.
Offering: Host
Grading: Cr/U
Credits: 0.50
Gen Ed Area: NSM-PHYS
Identical With: PHYS445
Prereq: (PHYS116 AND PHYS213)

PHYS358 Condensed Matter
This calculus-based course is an introduction to the physics of the solid state. It includes topics such as the reciprocal lattice, elastic constants, band structure, and Fermi surfaces.
Offering: Host
Grading: OPT
Credits: 1.00
Gen Ed Area: NSM-PHYS
Identical With: PHYS558
Prereq: PHYS316

PHYS377 Chemistry of Materials and Nanomaterials
This course will provide an introduction to materials chemistry, with a special emphasis on nanomaterials. Topics covered will include colloidal metal nanomaterials; semiconductors and quantum dots; carbon nanotubes, fullerenes, and graphene; metal-organic frameworks; self-assembly and metamaterials; electron and scanning probe microscopies; and lithography. The course will also discuss applications of these materials and techniques in areas such as plasmonics and sensing, catalysis, energy generation, and medicine.
Offering: Crosslisting
Grading: A-F
Credits: 1.00
Gen Ed Area: NSM-CHEM
Identical With: CHEM377
Prereq: CHEM251

PHYS395 Structural Biology Laboratory
One of the major catalysts of the revolution in biology that is now under way is our current ability to determine the physical properties and three-dimensional structures of biological molecules by x-ray diffraction, nuclear magnetic resonance (NMR) spectroscopy, and other spectroscopic methods. This course is designed to familiarize students with current research techniques in biochemistry and molecular biophysics. Students will perform spectroscopic investigations on a protein that they have isolated and characterized using typical biochemical techniques, such as electrophoresis, enzyme extraction, and column chromatography. The course will provide hands-on experience with spectroscopic methods such as NMR, fluorescence, UV-Vis absorption, and Raman as well as bioinformatic computational methods. All of these methods will be applied to the study of biomolecular structure and energetics. This course provides a broad knowledge of laboratory techniques valuable for independent research at the undergraduate level and beyond.
Offering: Crosslisting
Grading: A-F
Credits: 1.00
Gen Ed Area: NSM-MBB
Identical With: MB&B395, CHEM395
Prereq: [(CHEM142 AND CHEM325) OR (CHEM142 AND MB&B208) OR (CHEM142 AND PHYS207)] OR [(CHEM144 AND CHEM325) OR (CHEM144 AND MB&B208) OR (CHEM144 AND PHYS207)]

PHYS401 Individual Tutorial, Undergraduate
Topic to be arranged in consultation with the tutor.
Offering: Host
Grading: OPT

PHYS402 Individual Tutorial, Undergraduate
Topic to be arranged in consultation with the tutor.
Offering: Host
Grading: OPT

PHYS407 Senior Tutorial (downgraded thesis)
Downgraded Senior Thesis Tutorial - Project to be arranged in consultation with the tutor. Only enrolled in through the Honors Coordinator.
Offering: Host
Grading: A-F

PHYS408 Senior Tutorial (downgraded thesis)
Downgraded Senior Thesis Tutorial - Project to be arranged in consultation with the tutor. Only enrolled in through the Honors Coordinator.
Offering: Host
Grading: A-F

PHYS409 Senior Thesis Tutorial
Topic to be arranged in consultation with the tutor.
Offering: Host
Grading: OPT

PHYS410 Senior Thesis Tutorial
Topic to be arranged in consultation with the tutor.
Offering: Host
Grading: OPT

PHYS411 Group Tutorial, Undergraduate
Topic to be arranged in consultation with the tutor.
Offering: Host
Grading: OPT

PHYS412 Group Tutorial, Undergraduate
Topic to be arranged in consultation with the tutor.
Offering: Host
Grading: OPT

PHYS419 Student Forum
Student-run group tutorial, sponsored by a faculty member and approved by the chair of a department or program.
Offering: Host
Grading: Cr/U

PHYS420 Student Forum
Student-run group tutorial, sponsored by a faculty member and approved by the chair of a department or program.
Offering: Host
Grading: Cr/U

PHYS421 Undergraduate Research, Science
Individual research projects for undergraduate students supervised by faculty members.
Offering: Host
Grading: OPT

PHYS422 Undergraduate Research, Science
Individual research projects for undergraduate students supervised by faculty members.
Offering: Host
Grading: OPT

PHYS423 Advanced Research Seminar, Undergraduate
Advanced research tutorial; project to be arranged in consultation with the tutor.
Offering: Host
Grading: OPT
PHYS424 Advanced Research Seminar, Undergraduate
Advanced research tutorial; project to be arranged in consultation with the tutor.
Offering: Host
Grading: OPT

PHYS466 Education in the Field, Undergraduate
Students must consult with the department and class dean in advance of undertaking education in the field for approval of the nature of the responsibilities and method of evaluation.
Offering: Host
Grading: OPT

PHYS470 Independent Study, Undergraduate
Credit may be earned for an independent study during a summer or authorized leave of absence provided that (1) plans have been approved in advance, and (2) all specified requirements have been satisfied.
Offering: Host
Grading: OPT

PHYS491 Teaching Apprentice Tutorial
The teaching apprentice program offers undergraduate students the opportunity to assist in teaching a faculty member's course for academic credit.
Offering: Host
Grading: OPT

PHYS492 Teaching Apprentice Tutorial
The teaching apprentice program offers undergraduate students the opportunity to assist in teaching a faculty member's course for academic credit.
Offering: Host
Grading: OPT

PHYS500 Graduate Pedagogy
The elements of good teaching will be discussed and demonstrated through lectures, practice teaching sessions, and discussions of problems encountered in the actual teaching environment. The staff consists of faculty and experienced graduate students. An integral part of the course is a required one-day workshop BEFORE the first day of formal classes.

Training in pedagogy in the first semester of attendance is required for all incoming Wesleyan MA and PhD students who have not already fulfilled this requirement at Wesleyan. BA/MA students are not required to get training in pedagogy but may choose to do so.
Offering: Crosslisting
Grading: Cr/U
Credits: 0.50
Gen Ed Area: None
Identical With: ASTR500, CHEM500, BIOL500, E&ES500, MB&B500, MUSC500, PSYC500, MATH500
Prereq: None

PHYS501 Individual Tutorial, Graduate
Topic to be arranged in consultation with the tutor.
Offering: Host
Grading: OPT

PHYS502 Individual Tutorial, Graduate
Topic to be arranged in consultation with the tutor.
Offering: Host
Grading: OPT

PHYS504 Selected Topics, Graduate Sciences
Topic to be arranged in consultation with the tutor. A seminar primarily concerned with papers taken from current research publications designed for, and required of, graduate students.
Offering: Host
Grading: A-F

PHYS505 Condensed Matter Physics Seminar I
Presentations and discussions of material at the forefront of the discipline, emphasizing emerging, novel physics topics.
Offering: Host
Grading: Cr/U
Credits: 0.25
Gen Ed Area: None
Prereq: None

PHYS506 Condensed Matter Physics Seminar II
Presentations and discussion of material at the forefront of the discipline, emphasizing emerging, novel physics topics.
Offering: Host
Grading: Cr/U
Credits: 0.25
Gen Ed Area: None
Prereq: None

PHYS507 Atomic and Molecular Physics Seminar I
Presentations and discussions of material at the forefront of the discipline, emphasizing current research at Wesleyan.
Offering: Host
Grading: Cr/U
Credits: 0.25
Gen Ed Area: None
Prereq: PHYS5214

PHYS508 Atomic and Molecular Physics Seminar II
Presentations and discussions of material at the forefront of the discipline, emphasizing current research at Wesleyan.
Offering: Host
Grading: Cr/U
Credits: 0.25
Gen Ed Area: None
Prereq: None

PHYS509 Theoretical Physics Seminar I
Presentations and discussions of material at the forefront of the discipline, emphasizing emerging, novel physics topics.
Offering: Host
Grading: Cr/U
Credits: 0.25
Gen Ed Area: None
Prereq: ([PHYS313 or PHYS513] AND PHYS214 AND [PHYS315 or PHYS515] AND [PHYS316 or PHYS516])

PHYS510 Theoretical Physics Seminar II
Presentations and discussions of material at the forefront of the discipline, emphasizing emerging, novel physics topics.
Offering: Host
Grading: Cr/U
Credits: 0.25
Gen Ed Area: None
Prereq: ([PHYS315 or PHYS515] AND PHYS24 AND [PHYS316 or PHYS516])

PHYS511 Group Tutorial, Graduate
Topic to be arranged in consultation with the tutor.
Offering: Host
PHYS512 Group Tutorial, Graduate
Topic to be arranged in consultation with the tutor.
Offering: Host
Grading: OPT

PHYS513 Classical Dynamics
This is a course in classical mechanics at the intermediate level that utilizes problem solving instruction and learning. It approaches Newtonian mechanics from a more advanced point of view and introduces Lagrangian and Hamiltonian dynamics.
Offering: Crosslisting
Grading: OPT
Credits: 1.00
Gen Ed Area: NSM-PHYS
Identical With: PHYS313
Prereq: (PHYS213 AND MATH221 AND MATH222 AND MATH122)

PHYS515 Quantum Mechanics II
This course will expand the formalism of quantum mechanics to include spin and angular momentum in three dimensions. The quantum theory of identical particles will be developed and applied to multi-electron atoms.
Offering: Crosslisting
Grading: A-F
Credits: 1.00
Gen Ed Area: NSM-PHYS
Identical With: PHYS315
Prereq: (PHYS214 AND MATH223) OR (PHYS214 AND MATH221)

PHYS516 Thermal and Statistical Physics
Thermodynamics and statistical mechanics are pillars of physics. Thermodynamics provides a framework through which we can understand the rules for the conversion of energy and matter from one form to another. As we will learn, every transfer of energy results in the conversion of some energy into an unusable form. Using the tools of thermodynamics, we can establish limits for the amount of useful work that can be extracted from any process. These limits have important implications for the quest to achieve sustainability in our use of energy and materials. As we learn about thermodynamics, we will spend some time exploring this real-world application of the material covered.

Likewise, statistical mechanics provides us with a set of tools for understanding how the behavior of individual atoms and molecules impacts the properties and behavior of materials that can be observed in our daily lives. Our approach to this material differs from many previous physics courses and requires a mixture of statistical and counting skills, coupled with physical intuition for the nature of matter. In addition to explaining phase transitions, critical phenomena, and the statistical nature of fermions and bosons, the tools of statistical mechanics are essential for understanding phenomena like evaporative cooling and the greenhouse effect. We will explore the conditions that lead to these phenomena and discuss the role they may play in a comprehensive approach to sustainability.

Offering: Crosslisting
Grading: OPT
Credits: 1.00
Gen Ed Area: NSM-PHYS
Identical With: PHYS316
Prereq: PHYS214

PHYS517 Molecular Biophysics Journal Club I
This course includes presentation and active discussion of a series of current research articles in the field of molecular biophysics and biophysical chemistry from journals including but not limited to the Biophysical Journal, Biopolymers, Current Opinion in Structural Biology, Journal of Biomolecular Structure and Dynamics, and the Annual Review of Molecular Biophysics and Biomolecular Structure.
Offering: Crosslisting
Grading: Cr/U
Credits: 0.50
Gen Ed Area: NSM-CHEM
Identical With: MB&B507, MB&B307, CHEM507, CHEM307, PHYS317
Prereq: None

PHYS518 Molecular Biophysics Journal Club II
Offering: Crosslisting
Grading: Cr/U
Credits: 0.50
Gen Ed Area: NSM-CHEM
Identical With: MB&B508, MB&B308, CHEM508, PHYS318, CHEM308
Prereq: None

PHYS521 Physics Colloquium I
Presentations by outside experts and discussion of material at the forefront of the discipline, emphasizing emerging, novel physics topics.
Offering: Host
Grading: Cr/U
Credits: 0.25
Gen Ed Area: None
Prereq: None

PHYS522 Physics Colloquium II
Presentations by outside experts and discussion of material at the forefront of the discipline, emphasizing emerging, novel physics topics.
Offering: Host
Grading: Cr/U
Credits: 0.25
Gen Ed Area: None
Prereq: [(PHYS315 or PHYS515) AND (PHYS313 or PHYS513)]

PHYS524 Electricity and Magnetism
This course covers the classical field theory of electricity and magnetism. The core of the course covers electrostatics and magnetostatics with emphasis on both physical insight and the partial differential equations that describe these fields. We then cover electromagnetism to complete Maxwell's equations and to derive the elementary properties of electromagnetic radiation.

Offering: Crosslisting
Grading: OPT
Credits: 1.00
Gen Ed Area: NSM-PHYS
Identical With: PHYS324
Prereq: PHYS516 AND PHYS124 AND PHYS213 AND MATH222

PHYS539 Molecular and Cellular Biophysics
This course is an integrated consideration of the biophysics and biophysical chemistry of biological systems from molecules to cells. The objective is to develop a critical sense of the quantitative data currently being obtained from microscopy to spectroscopy, considering both ensemble and single-molecule experiments, and to gain familiarity and facility with interpretation using mathematical and computational models. Biological systems are inherently complex, and some form of modeling is always involved in developing an explanation of how they work. However, these models typically involve only a few basic constructs (simple harmonic motion, ideal fluids, two-state Ising models, random walks, electrostatic interactions, classical dynamics, rate equations, QM energy levels, distribution functions, and network analysis).
and only elementary aspects of linear algebra, calculus, differential equations, and statistics. This course deals with how these constructs are integrated in the framework of Boltzmann statistical mechanics to formulate mathematical models of biological phenomena, how these models are validated and refined, and how they are used to form explanations and make testable predictions. Model systems to be considered include the nucleosome, the ribosome, membrane dynamics and ion channels, molecular devices and motors, prototype signal transduction systems, and regulatory processes. This course is suitable for physics and chemistry students who wish to learn about biological applications and for molecular and cellular biology students to develop skills with quantitative physicochemical modes of inquiry applied to the life sciences.

Offering: Crosslisting
Grading: A-F
Credits: 1.00
Gen Ed Area: NSM-CHEM
Identical With: MB&B309, CHEM309, CHEM509, MB&B509, PHYS339
Prereq: None

PHYS542 Experimental Optics
This is an experimental course in optics, including lenses, lens combinations, interference and diffraction, interferometry, and spectrometry.

Offering: Crosslisting
Grading: A-F
Credits: 0.50
Gen Ed Area: NSM-PHYS
Identical With: PHYS342
Prereq: (PHYS116 AND PHYS213)

PHYS545 Electronics Lab
This laboratory course covers the fundamentals of analog and digital electronics: passive DC and AC circuits, linear transistor and integrated circuits, and digital integrated circuits.

Offering: Crosslisting
Grading: Cr/U
Credits: 0.50
Gen Ed Area: NSM-PHYS
Identical With: PHYS345
Prereq: (PHYS116 AND PHYS213)

PHYS549 Advanced Research Seminar, Graduate
Advanced research tutorial; project to be arranged in consultation with the tutor.

Offering: Host
Grading: OPT

PHYS550 Advanced Research Seminar, Graduate
Advanced research tutorial; project to be arranged in consultation with the tutor.

Offering: Host
Grading: OPT

PHYS558 Condensed Matter
This calculus-based course is an introduction to the physics of the solid state. It includes topics such as the reciprocal lattice, elastic constants, band structure, and Fermi surfaces.

Offering: Crosslisting
Grading: OPT
Credits: 1.00
Gen Ed Area: NSM-PHYS
Identical With: PHYS538
Prereq: PHYS5316

PHYS563 Analytical Mechanics
Advanced classical mechanics: multidimensional motion, rigid bodies and rotational dynamics, chaotic dynamics, and applications.

Offering: Host
Grading: A-F
Credits: 1.00

Gen Ed Area: None
Prereq: (PHYS213 AND PHYS217 AND PHYS313) OR (PHYS213 AND PHYS217 AND PHYS513)

PHYS565 Mathematical Physics
Historically, physics and mathematics are closely related. Physics uses powerful tools developed by mathematicians, while physicists, investigating the actually existing universe, provide mathematicians with new concepts and ideas to explore. This way, many mathematical techniques, and even entire areas of mathematics, developed from the need to solve certain real-life problems posed by physical reality. The purpose of this course is to give students an overview of the powerful array of mathematical tools available for the solution of physical problems. Starting with the presentation of tools of complex analysis, we will apply them to the solution of ordinary and partial differential equations. We will encounter Fourier and Laplace transforms and will study the Green's function method for the solution of bound and scattering problems. We will also look into the elements of Group Theory and apply it to angular momentum in quantum many-body systems.

Offering: Host
Grading: A-F
Credits: 1.00
Gen Ed Area: None
Prereq: MATH222 AND MATH223 AND PHYS313 AND PHYS315 AND PHYS324

PHYS566 Electrodynamics
This course covers boundary value problems, Green's functions, multipoles, fields in dielectric and magnetic media, electromagnetic radiation, and wave guides.

Offering: Host
Grading: OPT
Credits: 1.00
Gen Ed Area: None
Prereq: PHYS324

PHYS567 Statistical Mechanics
This course will develop important concepts in statistical physics by examining several applications in detail. The areas covered will include the classical and quantum gases, critical behavior and phase transitions, and elementary transport phenomena.

Offering: Host
Grading: A-F
Credits: 1.00
Gen Ed Area: None
Prereq: [PHYS316 or PHYS516]

PHYS568 Quantum Mechanics
This course will develop advanced aspects of theory and application of quantum mechanics.

Offering: Host
Grading: A-F
Credits: 1.00
Gen Ed Area: None
Prereq: [PHYS315 or PHYS515]

PHYS571 Advanced Topics in Atomic and Molecular Physics
This course will introduce classical and quantum collision theory, with special consideration of atomic and molecular collisions.

Offering: Host
Grading: OPT
Credits: 0.50
Gen Ed Area: None
Prereq: PHYS5315

PHYS572 Advanced Topics in Atomic and Molecular Physics
In this round of Advanced Topics (PHYS 572), fundamentals and applications of low temperature plasmas will be considered. We will investigate theoretical and experimental aspects related to the production and diagnostic of such plasmas.
Discussion of a several usages of plasmas—for example, in chemical analysis, material processing, environmental monitoring, or medical applications—will conclude the semester.

Offering: Host
Grading: OPT
Credits: 0.50
Gen Ed Area: None
Prereq: PHYS515

PHYS573 Advanced Topics in Condensed Matter
The course will cover advanced topics in condensed-matter physics, with emphasis on current research problems within the department.

Offering: Host
Grading: OPT
Credits: 0.50
Gen Ed Area: None
Prereq: PHYS524 OR PHYS5524

PHYS574 Advanced Topics in Condensed Matter
The course will cover advanced topics in condensed-matter physics, with emphasis on current research problems within the department. This course may be repeated for credit.

Offering: Host
Grading: OPT
Credits: 0.50
Gen Ed Area: None
Prereq: PHYS5324 OR PHYS5524

PHYS575 Advanced Topics in Theoretical Physics
This graduate course presents advanced topics in theory of relevance for current research in the department. The specific material varies each time the course is taught.

Offering: Host
Grading: OPT
Credits: 0.50
Gen Ed Area: None
Prereq: PHYS213 AND PHYS214 AND PHYS324

PHYS576 Advanced Topics in Theory
This graduate course will present advanced topics in theory of relevance for current research in the department.

Offering: Host
Grading: OPT
Credits: 0.50
Gen Ed Area: NSM-PHYS
Prereq: None

PHYS588 Seminar in Atomic and Molecular/Chemical Physics.
Weekly seminars presented jointly with the Chemistry Department under the auspices of the Chemical Physics Program. These informal seminars will be presented by students, faculty, and outside visitors on current research and other topics of interest.

Offering: Host
Grading: Cr/U
Credits: 0.25
Gen Ed Area: None
Identical With: CHEM548
Prereq: None