GRADUATE PHYSICS PROGRAM

The Physics Department offers graduate work leading to the PhD and MA. The small size of the program (12 full-time faculty and about 15 graduate students) permits the design of individual programs of study and allows the development of a close working collegial relationship among students and faculty. The department wants its students to do physics right from the start, rather than spend one or two years solely on coursework before getting into research. To this end, graduate students are expected to join in the research activities of the department upon arrival. An interdisciplinary program in chemical physics is available to interested students. For more details, see the listing for chemical physics in the Chemistry Department.

REQUIREMENTS FOR THE DEGREE OF MASTER OF ARTS
A minimum of eight credits with grades of B- or better is required for the MA degree. These may include three credits in research leading to the thesis, which is also required. Course selection is flexible and is done in consultation with the faculty advisor and with the members of the student’s committee.

REQUIREMENTS FOR THE PHD DEGREE
For the PhD degree, in addition, students must have taken (or placed out of) five PhD-level graduate core courses and five advanced topics courses. Students must have demonstrated proficiency in the main subject areas of physics by the time they have completed the program. Each student, after passing the first examination (see below), selects an advisory committee of three faculty members. The committee assists the student to design a program of study, monitors progress, and makes annual recommendations to the department regarding the student’s continuation in the program. The advisory committee also administers subsequent examinations, as described in Overview and Requirements.

Each student who has passed the candidacy examination (described in Overview and Requirements) is required to present an annual informal talk on his or her thesis work in a departmental seminar.

COURSES
In consultation with the advisory committee (or, for incoming students, with the graduate advisor), each student plans a program of study that will ensure an adequate grasp of the main subject areas of physics, e.g., quantum theory, including atomic and condensed-matter physics, electromagnetism and optics, classical dynamics, and thermal and statistical physics. While these would normally be graduate-level (500) physics courses, under special circumstances, either a lower-level physics course, a course in a related discipline, or a tutorial may be chosen.

PROGRESS AND QUALIFYING EXAMS
Three formal examinations serve to define the various stages of the student’s progress to the degree. The first, usually taken at the beginning of the second year, is a written examination on material at an advanced undergraduate level. Advancement to the second stage of candidacy depends on passing this examination as well as on coursework and demonstrated research potential. Usually during the second semester of the second year, each student takes the PhD candidacy examination, which consists of an oral presentation before the student’s advisory committee, describing and defending a specific research proposal. (The proposal might, but need not, grow out of previous research or be adopted by the student as a thesis topic.) The committee then recommends to the department whether to admit the student to the final stage of PhD candidacy or whether to advise the student to seek an MA degree.

TEACHING
Although the emphasis in the program is on independent research and scholarly achievement, graduate students are expected to improve their skills in teaching and other forms of oral communication. Each student is given the opportunity for some undergraduate teaching under direct faculty supervision. While this usually consists of participation in teaching undergraduate laboratories, direct classroom teaching experience is also possible for more advanced and qualified students.

RESEARCH
Current experimental research areas are concentrated in atomic/molecular physics and condensed matter physics. Current interests include Rydberg states in strong fields, molecular collisions, photo-ionization, laser-produced plasmas, quantum fluids, granular and turbulent fluid flows, lipid membranes and hydration dynamics, single-molecule biophysics, and optoelectronics of renewable energy materials.

Current theoretical and computational research areas include nonlinear dynamics, quantum chaos, properties of nanostructures, soft condensed matter, and wave transport in complex media.

THESIS | DISSERTATION | DEFENSE
Each candidate is required to write a dissertation on original and significant research, either experimental or theoretical, supervised by a member of the faculty. The work must be defended in a final oral examination administered by the advisory committee. This oral examination covers the dissertation and related topics and is open to all members of the Wesleyan community. It is expected that the candidate will submit the results of his or her work to a scholarly journal for publication.

ADDITIONAL INFORMATION
For additional information, please visit the department website at wesleyan.edu/physics/graduate (http://wesleyan.edu/physics/graduate).