The Department of Mathematics and Computer Science offers undergraduate majors in mathematics and in computer science. We also participate in the Informatics and Modeling Certificate Program. The department’s graduate programs include a PhD in mathematics and MA programs in mathematics and in computer science.

Each student’s course of study is designed to provide an introduction to the basic areas of mathematics or computer science and to provide the technical tools that will be useful later in the student’s career. The course of study is planned in consultation with the student’s faculty advisor and the department’s advisory committees, DADCOM for mathematics and CADCOM for computer science.

The department’s graduate programs include a PhD program in mathematics and MA programs in mathematics and in computer science. The research emphasis at Wesleyan at the doctoral level is in pure mathematics and theoretical computer science. One of the distinctive features of our department is the close interaction between the computer science faculty and the mathematics faculty, particularly those in logic and discrete mathematics.

Graduate students at Wesleyan enjoy small classes and close interactions with faculty and fellow graduate students. Graduate students normally register for three classes a semester and are expected to attend departmental colloquia and at least one regular seminar. The number of graduate students ranges from 17 to 21, with an entering class of three to six each year. There have always been both male and female students, graduates of small colleges and large universities, and U.S. and international students, including, in recent years, students from Bulgaria, Chile, China, Germany, India, Iran, and Sri Lanka. All of the department’s recent PhD recipients have obtained faculty positions. Some have subsequently moved to mathematical careers in industry and government.

For additional information, please visit wesleyan.edu/mathcs/graduate/ (http://www.wesleyan.edu/mathcs/graduate).

FACULTY

Ilesanmi Adeboye
PHD, University of Michigan
Assistant Professor of Mathematics

Wai Kiu Chan
BS, University of Hong Kong; MPhil, University of Hong Kong; PHD, The Ohio State University
Professor of Mathematics

Karen L. Collins
BA, Smith College; PHD, Massachusetts Institute of Technology
Edward Burr Van Vleck Professor of Mathematics; Professor of Mathematics; Professor, Integrative Sciences

David A. Constantine
BS, Eastern Nazarene College; PHD, University of Michigan
Assistant Professor of Mathematics

Norman Danner
BA, University of California, Berkeley; PHD, Indiana University Bloomington
Associate Professor of Computer Science

Adam Fieldsteel
BA, Brown University; MAA, Wesleyan University; PHD, University of California, Berkeley
Professor of Mathematics; Chair, Mathematics and Computer Science

Cameron Donnay Hill
BA, Yale University; PHD, University of California, Berkeley
Assistant Professor of Mathematics

Mark A. Hovey
BS, Ohio State University; PHD, Massachusetts Institute of Technology
Associate Provost; Professor of Mathematics

Daniel Krizanc
BS, University of Toronto; PHD, Harvard University
Professor of Computer Science; Vice-Chair, Mathematics and Computer Science; Professor, Environmental Studies; Professor, Integrative Sciences; Co-Coordinator, Informatics and Modeling

Constance Leidy
BS, Tulane University; PHD, Rice University
Associate Professor of Mathematics

Han Li
BS, Nankai University; PHD, Yale University
Assistant Professor of Mathematics

Dan Licata
BS, Brown University; PHD, Carnegie Mellon University
Assistant Professor of Computer Science

James Lipton
BS, U Nebraska Lincoln; MS, Cornell University; PHD, Cornell University
Professor of Computer Science

Victoria Ursula Manfredi
BA, Smith College; MS, University of Massachusetts Amherst; PHD, University of Massachusetts Amherst
Assistant Professor of Computer Science

David Pollack
MA, Harvard University; PHD, Harvard University; SB, University of Chicago
Associate Professor of Mathematics

Felipe A. Ramirez
BS, Colorado St University; PHD, University of Michigan
Assistant Professor of Mathematics

Christopher Rasmussen
BA, University of Virginia; MS, University of Virginia; PHD, University of Arizona
Associate Professor of Mathematics

Philip H. Scowcroft
BA, Harvard University; MA, Cornell University; PHD, Cornell University
Edward Burr Van Vleck Professor of Mathematics; Professor of Mathematics

Saray Shai
BS, Israel Institute of Technology; PHD, University of St Andrews
Assistant Professor of Computer Science

AFFILIATED FACULTY

Sara Kalisnik Verovsek
Assistant Professor of Math, starting in Fall 2018

Daejun Kim
Visiting Scholar in Mathematics

Tsampikos Kottos
BA, University of Crete; MS, University of Crete; PHD, University of Crete
Professor of Physics; Professor, Integrative Sciences; Professor, Mathematics

Dayoon Park
Visiting Scholar in Mathematics

VISITING FACULTY

Cameron Bishop
Graduate Student, MATH-PHD; Visiting Instructor in Mathematics

Jeff Epstein
BA, Hunter College; MPHIL, University of Cambridge
Visiting Instructor in Computer Science

Alyson Hildum
BA, Colorado School Mines; PHD, Brandeis University
Visiting Assistant Professor of Mathematics

Jonathan Huang
BA, Dartmouth College; PHD, University of Maryland College Park
Visiting Assistant Professor of Mathematics

Edward Morehouse
BS, University of California, Santa Barbara; PHD, Wesleyan University
Postdoctoral Fellow in Computer Science

Miriam Parnes
Graduate Student, MATH-PHD; Visiting Faculty, Per Course, in Mathematics

Mitchell Vern Riley
MSC, University Wstrn Ontario; BS, University Of Queensland
Graduate Student, MATH-PHD; Visiting Instructor in Mathematics

Noelle Sawyer
Graduate Student, MATH-PHD; Visiting Instructor in Mathematics

Matthew James Willis
BA, College of New Jersey; MA, University of North Carolina at Chapel Hill; PHD, University of North Carolina at Chapel Hill
Visiting Assistant Professor of Mathematics

EMERITI

Ethan M. Coven
BA, University of Rochester; MA, Yale University; MAA, Wesleyan University; PHD, Yale University
Professor of Mathematics, Emeritus

Anthony W. Hager
BS, Pennsylvania State University; PHD, Pennsylvania State University
Professor of Mathematics, Emeritus

Michael S. Keane
BA, University of Texas Austin; MS, University of Gottingen; PHD, University of Erlangen-Nurnber

Professor of Mathematics, Emeritus

Michael D. Rice
BS, Western Michigan University; MS, Western Mich University; PHD, Wesleyan University
Professor of Computer Science, Emeritus

Lewis C. Robertson
BS, University of Chicago; MS, University of Chicago; PHD, University of California LA
Professor of Mathematics, Emeritus

Carol S. Wood
AB, Randolph Macon W College; MAA, Wesleyan University; PHD, Yale University
Edward Burr Van Vleck Professor of Mathematics, Emerita

DEPARTMENTAL UNDERGRADUATE ADVISING EXPERTS

DADCOM provides advice and transfer credit approval for students in mathematics. CADCIM provides advice and transfer credit approval for students in computer science.

- Undergraduate Computer Science Major (catalog.wesleyan.edu/departments/math/ugrd-comp)
- Undergraduate Mathematics Major (catalog.wesleyan.edu/departments/math/ugrd-math)
- Doctor of Philosophy in Mathematics (catalog.wesleyan.edu/departments/math/grad-math-phd)
- Master of Arts in Mathematics and Computer Science (catalog.wesleyan.edu/departments/math/grad-ma)

COMPUTER SCIENCE

COMP112 Introduction to Programming
"The course will provide an introduction to a modern, high-level programming language including a discussion of input/output, basic control structures, types, functions, and classes. The lectures will also discuss a variety of algorithms as well as program design issues.

The second meeting time for each section is a computer lab."
Offering: Host
Grading: OPT
Credits: 1.00
Gen Ed Area: NSM-MATH
Prereq: None

COMP113 Bioinformatics Programming
This course is an introduction to bioinformatics and programming for students with interest in the life sciences. It introduces problem areas and conceptual frameworks in bioinformatics. The course assumes little or no prior programming experience and will introduce the fundamental concepts and mechanisms of computer programs and examples (e.g., sequence matching and manipulation, database access, output parsing, dynamic programming) frequently encountered in the field of bioinformatics.
Offering: Crosslisting
Grading: A-F
Credits: 1.00
Gen Ed Area: NSM-BIOL
Identical With: CIS265, MB&B265, BIOL265
Prereq: [MB&B181 or BIOL181]

COMP114 How to Talk to Machines
"In this course, students will learn how to program in a number of different styles. We start with programming state-transition machines, the kind of programming one might use to instruct a robot how to interact with the world around it. We will move on to programming von Neumann machines, which form the core of most computing systems today, and so along the way we will learn what is "in the box." We will end with an introduction to high-level programming, learning the fundamentals of programming in a language such as Python or Java.

The goal of the course is to understand not just programming, but how computers are designed, and how those designs are reflected in the way we program them. Along the way, we will pay special attention to the commonalities of the various styles, ultimately learning that much of what a high-level language provides is a way to more easily express computational algorithms that are ultimately implemented on a state transition machine. After passing this course, students will have a working knowledge of basic programming, and COMP 114 satisfies the Mathematics major "elementary knowledge of algorithms and computer programming" requirement."
Offering: Host
Grading: OPT
Credits: 1.00
Gen Ed Area: NSM-MATH
Prereq: None

COMP115 How to Design Programs
In this course, students will learn to systematically design programs, going from a problem statement to a well-organized solution in a step-by-step fashion. We will apply these program design skills to many applications within computer science and in other disciplines. Students will develop their mathematical skills, because we will use a symbolic view of computation that explains the process of running a program as simple manipulations of its text. Students will also develop their technical reading and writing skills, such as understanding complex problem descriptions and precisely articulating the design of solutions. No prior experience with programming or computer science is expected.
Offering: Host
Grading: A-F
Credits: 1.00
Gen Ed Area: NSM-MATH
Prereq: None

COMP112 Can Machines Think? (Logic and Computation)
This course will address the question of machine reasoning and its scope through the perspective of computation and logic. We will start by studying the elements of mathematical logic and will learn how to code in the ML programming language so we can approach the issues of automated deduction from both a technical and philosophical perspective. The course will also include extensive readings on consciousness and on the capabilities and limits of computation. Students will be required to write several detailed essays on the issues discussed in class and in the readings.
Offering: Host
Grading: OPT
Credits: 1.00
Gen Ed Area: NSM-MATH
Prereq: None

COMP113 Computing, Privacy, and Security
This course will discuss both technical and ethical issues related to computing. On the technical side, the material will cover topics such as networking and cryptography. The technical material will be learned in the service of discussing social and ethical issues such as privacy, security, and intellectual property.

Neither list is exhaustive, and each list is likely to be modified according to the interests of the instructor, interests of the students, and current events.
Offering: Host
Grading: A-F
Credits: 1.00
Gen Ed Area: NSM-MATH
Prereq: None

COMP211 Computer Science I
"This is the first course in a two-course sequence (COMP211-212) that is the gateway to the computer science major. It is intended for prospective computer science majors and others who want an in-depth understanding of programming and computer science. Topics to be covered in COMP211-212 include an introduction to the fundamental ideas of programming in imperative and functional languages, correctness and cost specifications, and proof techniques for verifying specifications.

Specifics such as choice of programming language, which topics are covered in which semesters, etc., will vary according to the tastes of the faculty offering the courses."
Offering: Host
Grading: A-F
Credits: 1.00
Gen Ed Area: NSM-MATH
Prereq: COMP112 OR COMP113 OR COMP115

COMP212 Computer Science II
"This is the second course in a two-course sequence (COMP211-212) that is the gateway to the computer science major. It is intended for prospective computer science majors and others who want an in-depth understanding of programming and computer science. Topics to be covered in COMP211-212 include an introduction to the fundamental ideas of programming in imperative and functional languages, correctness and cost specifications, and proof techniques for verifying specifications.

Specifics such as choice of programming language, which topics are covered in which semesters, etc., will vary according to the tastes of the faculty offering the courses."
Offering: Host
Grading: A-F
Credits: 1.00
Gen Ed Area: NSM-MATH
Prereq: COMP211

COMP260 Special Topics in Computer Science
This course is designed for nonmajors who wish to pursue some topic in computer science beyond introduction to programming. Topics will vary according to the instructor.
Offering: Host
Grading: A-F
Credits: 1.00
Gen Ed Area: NSM-MATH
Identical With: QAC260
Prereq: COMP112

COMP266 Bioinformatics
This course is an introduction to bioinformatics for students with interest in the life sciences. The course is similar to BIOL265 but only meets in the second half of the semester (with BIOL265) and is designed for students with programming background, ideally in Python. The course introduces problem areas and conceptual frameworks in bioinformatics and discusses programming approaches used in bioinformatics such as sequence matching and manipulation algorithms using dynamic programming, clustering analysis of gene expression data, analysis of genetic nets using Object Oriented Programming, and sequence
analysis using Hidden Markov Models, Regular Expressions, and information theory.

Offering: Crosslisting
Grading: A-F
Credits: 0.50
Gen Ed Area: NSM-BIOL
Identical With: BIOL266, CIS266, MB&B266
Prereq: [MB&B181 OR BIOL181]

COMP301 Automata Theory and Formal Languages
This course is an introduction to formalisms studied in computer science and mathematical models of computing machines. The language formalisms discussed will include regular, context-free, recursive, and recursively enumerable languages. The machine models discussed include finite-state automata, pushdown automata, and Turing machines.

Offering: Host
Grading: A-F
Credits: 1.00
Gen Ed Area: NSM-MATH
Identical With: COMP500
Prereq: COMP211 AND COMP212 AND MATH228

COMP312 Algorithms and Complexity
The course will cover the design and analysis of efficient algorithms. Basic topics will include greedy algorithms, divide-and-conquer algorithms, dynamic programming, and graph algorithms. Some advanced topics in algorithms may be selected from other areas of computer science.

Offering: Host
Grading: A-F
Credits: 1.00
Gen Ed Area: NSM-MATH
Identical With: COMP510
Prereq: COMP212 AND MATH228

COMP321 Design of Programming Languages
This course is an introduction to concepts in programming languages. Topics include parameter passing, type checking and inference, control mechanisms, data abstraction, module systems, and concurrency. Basic ideas in functional, object-oriented, and logic programming languages will be discussed.

Offering: Host
Grading: A-F
Credits: 1.00
Gen Ed Area: NSM-MATH
Identical With: COMP521
Prereq: COMP212 AND MATH228

COMP327 Evolutionary and Ecological Bioinformatics
Bioinformatic analysis of gene sequences and gene expression patterns has added enormously to our understanding of ecology and evolution. For example, through bioinformatic analysis of gene sequences, we can now reconstruct the evolutionary history of physiology, even though no traces of physiology exist in the fossil record. We can determine the adaptive history of one gene and all the gene's descendants. We can now construct the evolutionary tree of all of life. Bioinformatics is particularly promising for analysis of the ecology and biodiversity of microbial communities, since well over 99 percent of microorganisms cannot be cultured; our only knowledge of these organisms is through analysis of their gene sequences and gene expression patterns. For example, even when we cannot culture most of a microbial community, we can determine which metabolic pathways are of greatest significance through analysis of community-level gene expression. All these research programs are made accessible not only by breakthroughs in molecular technology but also by innovation in the design of computer algorithms. This course, team-taught by an evolutionary biologist and a computer scientist, will present how bioinformatics is revolutionizing evolutionary and ecological investigation and will present the design and construction of bioinformatic computer algorithms underlying the revolution in biology. Students will learn algorithms for reconstructing phylogeny, for sequence alignment, and for analysis of genomes, and students will have an opportunity to create their own algorithms.

Offering: Crosslisting
Grading: A-F
Credits: 1.00
Gen Ed Area: NSM-BIOL
Identical With: COMP527, CIS527, BIOL527
Prereq: [BIOL182 or MB&B182] OR [BIOL196 or MB&B196] OR COMP112 OR COMP211

COMP331 Computer Structure and Organization
The purpose of the course is to introduce and discuss the structure and operation of digital computers. Topics will include the logic of circuits, microarchitectures, microprogramming, conventional machine architectures, and an introduction to software/hardware interface issues. Assembly language programming will be used to demonstrate some of the basic concepts.

Offering: Host
Grading: A-F
Credits: 1.00
Gen Ed Area: NSM-MATH
Identical With: COMP531
Prereq: COMP212

COMP332 Computer Networks
This course will provide an introduction to the fundamentals of computer networks. Computer networks have become embedded in our everyday lives, from the Internet to cellular phones to cloud networking, enabling applications such as email, texting, web browsing, on-demand video, video conferencing, peer-to-peer file sharing, social networking, cloud computing, and more. This course will delve into the infrastructure and protocols that have allowed computer networks to achieve their current ubiquity. While the primary focus of the course will be on the Internet's architecture, protocols, and applications, we will also touch on other types of computer networks. Programming assignments will be done using Python; prior knowledge of Python is not required.

Offering: Host
Grading: A-F
Credits: 1.00
Gen Ed Area: NSM-MATH
Prereq: COMP212 and MATH228

COMP342 Software Engineering
"This course provides an introduction to the processes and tools of software engineering: the design, development, testing, and maintenance of large software systems. The course is based on the Berkeley MOOC "Software Engineering as a Service" and uses on-line material from the MOOC to provide some of the course content. The first part of the course will cover developing software in teams as well as learning the languages and tools used in the course, including Ruby, Rails, Cucumber, RSpec, Pivotal Tracker, and gitHub.

The second part of the course will continue to present software engineering concepts but will also focus on developing a team service-learning software development project for an external customer."

Offering: Host
Grading: A-F
Credits: 1.50
Gen Ed Area: NSM-MATH
Prereq: COMP211 AND COMP212

COMP350 Computational Media: Videogame Design and Development
This course examines the interplay of art and science in the development of contemporary video games using "game tool" applications to achieve a variety
of purposes. It combines a detailed understanding of computational media, including legal and commercial aspects, with hands-on experience in the creative process. There will be discussions with invited industry leaders in various subject areas. Students will have the opportunity to work as part of development teams and create working prototypes to understand the challenges and rewards of producing video games in a professional context.

Offering: Crosslisting
Grading: A-F
Credits: 2.00
Gen Ed Area: NSM-MATH
Identical With: CIS250, FILM250, IDEA250
Prereq: None

COMP352 Topics in Artificial Intelligence
The content of this course will be artificial intelligence and machine learning. The course will cover search strategies and planning and will build up to basic machine learning principles and techniques. Includes some programming.

Offering: Host
Grading: A-F
Credits: 1.00
Gen Ed Area: NSM-MATH
Identical With: COMP352
Prereq: MATH228 AND COMP212

COMP356 Computer Graphics
This course covers fundamental algorithms in two- and three-dimensional graphics. The theory and application of the algorithms will be studied, and implementation of the algorithms or applications of them will be an integral part of the course. According to the tastes of the instructor, additional topics such as elementary animation or more advanced techniques may be covered.

Offering: Host
Grading: A-F
Credits: 1.00
Gen Ed Area: NSM-MATH
Prereq: COMP212

COMP360A Special Topics in Computer Science
This course covers special topics in computer science. Topics will vary according to the instructor.

Offering: Host
Grading: A-F
Credits: 1.00
Gen Ed Area: NSM-MATH
Prereq: COMP212 AND MATH228

COMP360B Special Topics in Computer Science
This course covers special topics in computer science. Topics will vary according to the instructor.

Offering: Host
Grading: A-F
Credits: 1.00
Gen Ed Area: NSM-MATH
Prereq: COMP212 AND MATH228

COMP360C Special Topics in Computer Science
This course covers special topics in computer science. Topics will vary according to the instructor.

Offering: Host
Grading: A-F
Credits: 1.00
Gen Ed Area: NSM-MATH
Prereq: COMP212 AND MATH228

COMP361 Advanced Topics in Computer Science
This course covers advanced topics in Computer Science. The precise topics will vary with the offering, but will typically have prerequisites beyond COMP 211-212. This course may be repeated for credit.

Offering: Host
Grading: A-F
Credits: 1.00
Gen Ed Area: NSM-MATH
Prereq: COMP321

COMP401 Individual Tutorial, Undergraduate
Topic to be arranged in consultation with the tutor.

Offering: Host
Grading: OPT

COMP402 Individual Tutorial, Undergraduate
Topic to be arranged in consultation with the tutor.

Offering: Host
Grading: A-F

COMP403 Department/Program Project or Essay
Project to be arranged in consultation with the tutor.

Offering: Host
Grading: OPT

COMP404 Department/Program Project or Essay
Project to be arranged in consultation with the tutor.

Offering: Host
Grading: A-F

COMP407 Senior Tutorial (downgraded thesis)
Downgraded Senior Thesis Tutorial - Project to be arranged in consultation with the tutor. Only enrolled in through the Honors Coordinator.

Offering: Host
Grading: A-F

COMP408 Senior Tutorial (downgraded thesis)
Downgraded Senior Thesis Tutorial - Project to be arranged in consultation with the tutor. Only enrolled in through the Honors Coordinator.

Offering: Host
Grading: A-F

COMP409 Senior Thesis Tutorial
Topic to be arranged in consultation with the tutor.

Offering: Host
Grading: OPT

COMP410 Senior Thesis Tutorial
Topic to be arranged in consultation with the tutor.

Offering: Host
Grading: OPT

COMP411 Group Tutorial, Undergraduate
Topic to be arranged in consultation with the tutor.

Offering: Host
Grading: OPT

COMP412 Group Tutorial, Undergraduate
Topic to be arranged in consultation with the tutor.

Offering: Host
Grading: OPT

COMP419 Student Forum
Student-run group tutorial, sponsored by a faculty member and approved by the chair of a department or program.

Offering: Host
Grading: Cr/U
COMP420 Student Forum
Student-run group tutorial, sponsored by a faculty member and approved by the chair of a department or program.
Offering: Host
Grading: Cr/U

COMP421 Undergraduate Research, Sciences
Individual research projects for undergraduate students supervised by faculty members.
Offering: Host
Grading: A-F

COMP422 Undergraduate Research, Sciences
Individual research projects for undergraduate students supervised by faculty members.
Offering: Host
Grading: OPT

COMP423 Advanced Research Seminar, Undergraduate
Advanced research tutorial; project to be arranged in consultation with the tutor.
Offering: Host
Grading: OPT

COMP424 Advanced Research Seminar, Undergraduate
Advanced research tutorial; project to be arranged in consultation with the tutor.
Offering: Host
Grading: OPT

COMP469 Education in the Field, Undergraduate
Students must consult with the department and class dean in advance of undertaking education in the field for approval of the nature of the responsibilities and method of evaluation.
Offering: Host
Grading: A-F
Credits: 1.00
Gen Ed Area: None
Prereq: None

COMP491 Teaching Apprentice Tutorial
The teaching apprentice program offers undergraduate students the opportunity to assist in teaching a faculty member’s course for academic credit.
Offering: Host
Grading: OPT

COMP492 Teaching Apprentice Tutorial
The teaching apprentice program offers undergraduate students the opportunity to assist in teaching a faculty member’s course for academic credit.
Offering: Host
Grading: OPT

COMP500 Automata Theory and Formal Languages
This course is an introduction to formalisms studied in computer science and mathematical models of computing machines. The language formalisms discussed will include regular, context-free, recursive, and recursively enumerable languages. The machine models discussed include finite-state automata, pushdown automata, and Turing machines.
Offering: Crosslisting
Grading: A-F
Credits: 1.00
Gen Ed Area: NSM-MATH
Identical With: COMP301
Prereq: COMP211 AND COMP212 AND MATH228

COMP501 Individual Tutorial, Graduate
Topic to be arranged in consultation with the tutor.
Offering: Host
Grading: OPT

COMP502 Individual Tutorial, Graduate
Topic to be arranged in consultation with the tutor.
Offering: Host
Grading: OPT

COMP503 Selected Topics, Graduate Sciences
Topic to be arranged in consultation with the tutor. A seminar primarily concerned with papers taken from current research publications designed for, and required of, graduate students.
Offering: Host
Grading: A-F

COMP504 Selected Topics, Graduate Sciences
Topic to be arranged in consultation with the tutor. A seminar primarily concerned with papers taken from current research publications designed for, and required of, graduate students.
Offering: Host
Grading: A-F

COMP510 Algorithms and Complexity
The course will cover the design and analysis of efficient algorithms. Basic topics will include greedy algorithms, divide-and-conquer algorithms, dynamic programming, and graph algorithms. Some advanced topics in algorithms may be selected from other areas of computer science.
Offering: Crosslisting
Grading: A-F
Credits: 1.00
Gen Ed Area: NSM-MATH
Identical With: COMP312
Prereq: COMP212 AND MATH228

COMP511 Group Tutorial, Graduate
Topic to be arranged in consultation with the tutor.
Offering: Host
Grading: OPT

COMP512 Group Tutorial, Graduate
Topic to be arranged in consultation with the tutor.
Offering: Host
Grading: OPT

COMP521 Design of Programming Languages
This course is an introduction to concepts in programming languages. Topics include parameter passing, type checking and inference, control mechanisms, data abstraction, module systems, and concurrency. Basic ideas in functional, object-oriented, and logic programming languages will be discussed.
Offering: Crosslisting
Grading: A-F
Credits: 1.00
Gen Ed Area: NSM-MATH
Identical With: COMP321
Prereq: COMP212 AND MATH228

COMP527 Evolutionary and Ecological Bioinformatics
Bioinformatic analysis of gene sequences and gene expression patterns has added enormously to our understanding of ecology and evolution. For example, through bioinformatic analysis of gene sequences, we can now reconstruct the evolutionary history of physiology, even though no traces of physiology exist in the fossil record. We can determine the adaptive history of one gene and all the gene’s descendants. We can now construct the evolutionary tree of all of life. Bioinformatics is particularly promising for analysis of the ecology and biodiversity of microbial communities, since well over 99 percent of microorganisms cannot be cultured; our only knowledge of these organisms is through analysis of their gene sequences and gene expression patterns. For example, even when we cannot culture most of a microbial community, we can determine which metabolic pathways are of greatest significance through
analysis of community-level gene expression. All these research programs are made accessible not only by breakthroughs in molecular technology but also by innovation in the design of computer algorithms. This course, team-taught by an evolutionary biologist and a computer scientist, will present how bioinformatics is revolutionizing evolutionary and ecological investigation and will present the design and construction of bioinformatic computer algorithms underlying the revolution in biology. Students will learn algorithms for reconstructing phylogeny, for sequence alignment, and for analysis of genomes, and students will have an opportunity to create their own algorithms.

Offering: Crosslisting
Grading: A-F
Credits: 1.00
Gen Ed Area: NSM-BIOL
Identical With: CIS327, BIOL327, COMP327, BIOLS27
Prereq: [BIOL182 or MB&B182] OR [BIOL196 or MBB196] OR COMP112 OR COMP211

COMP331 Computer Structure and Organization
The purpose of the course is to introduce and discuss the structure and operation of digital computers. Topics will include the logic of circuits, microarchitectures, microprogramming, conventional machine architectures, and an introduction to software/hardware interface issues. Assembly language programming will be used to demonstrate some of the basic concepts.

Offering: Crosslisting
Grading: A-F
Credits: 1.00
Gen Ed Area: NSM-MATH
Identical With: COMP331
Prereq: COMP212

COMP549 Advanced Research Seminar, Graduate
Advanced research tutorial; project to be arranged in consultation with the tutor.

Offering: Host
Grading: OPT

COMP550 Advanced Research Seminar, Graduate
Advanced research tutorial; project to be arranged in consultation with the tutor.

Offering: Host
Grading: OPT

COMP552 Topics in Artificial Intelligence
The content of this course will be artificial intelligence and machine learning. The course will cover search strategies and planning and will build up to basic machine learning principles and techniques. Includes some programming.

Offering: Crosslisting
Grading: A-F
Credits: 1.00
Gen Ed Area: NSM-MATH
Identical With: COMP352
Prereq: MATH228 AND COMP212

COMP571 Special Topics in Computer Science
Supervised reading course of varying length. This course may be repeated for credit.

Offering: Host
Grading: A-F
Credits: 1.00
Gen Ed Area: None
Prereq: None

COMP572 Special Topics in Computer Science
Supervised reading course of varying length. This course may be repeated for credit.

Offering: Host
Grading: OPT
Credits: 1.00
Gen Ed Area: NSM-MATH
Prereq: MATH119

MATH117 Introductory Calculus
This course is designed to introduce basic ideas and techniques of differential calculus. Students should enter with sound precalculus skills but with very limited or no prior study of calculus. Topics to be considered include differential calculus of algebraic, exponential, and logarithmic functions. Integral calculus will be introduced in MATH118.

Offering: Host
Grading: A-F
Credits: 1.00
Gen Ed Area: NSM-MATH
Prereq: None

MATH118 Introductory Calculus II: Integration and Its Applications
This course continues MATH117 and is designed to introduce basic ideas and techniques of calculus. Students should enter MATH118 with sound precalculus skills and with very limited or no prior study of integral calculus. Topics to be considered include differential and integral calculus of algebraic, exponential, and logarithmic functions.

Offering: Host
Grading: A-F
Credits: 1.00
Gen Ed Area: NSM-MATH
Prereq: None

MATH119 Elements of Calculus, Part 1
This course is the first half of a two-semester calculus sequence (MATH119 & MATH120). This sequence is designed for students who have not previously studied calculus. The course, together with MATH120, will cover limits, derivatives, and integrals. Exponential, logarithmic, and trigonometric functions will be introduced and their calculus will be studied. Applications of calculus to biology, economics, physics, and/or other fields will be emphasized. Completion of both semesters (MATH119 and MATH120) is required to receive credit for MATH 119.

Offering: Host
Grading: A-F
Credits: 1.00
Gen Ed Area: NSM-MATH
Prereq: None

MATH120 Elements of Calculus, Part II
This course is the second half of a two-semester calculus sequence (an amperand [&] course). This sequence is designed for students who have not previously studied calculus. The course, together with MATH119, will cover limits, derivatives, and integrals. Exponential, logarithmic, and trigonometric functions will be introduced and their calculus will be studied. Applications of calculus to biology, economics, physics, and/or other fields will be emphasized. Completion of both semesters (MATH119 and MATH120) is required to receive credit for MATH119.

Offering: Host
Grading: A-F
Credits: 1.00
Gen Ed Area: NSM-MATH
Prereq: MATH119

MATH121 Calculus I, Part I
MATH121 is designed for students who have completed a high school calculus course and who might pursue study in an area for which calculus is an essential tool but who are not prepared to place out of calculus. This course is a deeper
and broader study of calculus than MATH117; theoretical aspects are not the main focus but will not be avoided. The course will, together with MATH122, treat limits, derivatives, and integrals; the calculus of exponential, logarithmic, trigonometric, and inverse trigonometric functions; techniques of integration; plane analytic geometry; various applications of calculus; and sequences and series, including power series and intervals of convergence.

Offering: Host
Grading: A-F
Credits: 1.00
Gen Ed Area: NSM-MATH
Prereq: None

MATH122 Calculus I, Part II
The continuation of MATH121. Topics covered include techniques and applications of integration and an introduction to sequences and series.

Offering: Host
Grading: A-F
Credits: 1.00
Gen Ed Area: NSM-MATH
Prereq: None

MATH132 Elementary Statistics
Topics included in this course are organizing data, central measures, measures of variation, distributions, sampling, estimation, conditional probability (Bayes' theorem), hypothesis testing, simple regression and correlation, and analysis of variation.

Offering: Host
Grading: A-F
Credits: 1.00
Gen Ed Area: NSM-MATH
Prereq: None

MATH163 An Invitation to Mathematics
This course aims to introduce students to some of the great ideas of mathematics. We will investigate a variety of topics in number theory, set theory, probability, game theory, topology, and geometry. One major goal is to give students a chance to "think like a mathematician." Thus, students will be encouraged to explore and to discover mathematical patterns and ideas for themselves. We will also gain an understanding of what constitutes a mathematical proof and why mathematicians are so insistent about them.

Offering: Host
Grading: A-F
Credits: 1.00
Gen Ed Area: NSM-MATH
Prereq: None

MATH211 Problem Solving for the Putnam
This course will explore the problems and problem-solving techniques of the annual William Lowell Putnam mathematical competition. Particular emphasis will be placed on learning to write clear and complete solutions to problems. The competition is open to all undergraduate students.

Offering: Host
Grading: Cr/JU
Credits: 0.25
Gen Ed Area: NSM-MATH
Prereq: None

MATH221 Vectors and Matrices
This is a course in the algebra of matrices and Euclidean spaces that emphasize the concrete and geometric. Topics to be developed include solving systems of linear equations; matrix addition, scalar multiplication, and multiplication; properties of invertible matrices; determinants; elements of the theory of abstract finite dimensional real vector spaces; dimension of vector spaces; and the rank of a matrix. These ideas are used to develop basic ideas of Euclidean geometry and to illustrate the behavior of linear systems. We conclude with a discussion of eigenvalues and the diagonalization of matrices.

Offering: Host
Grading: A-F
Credits: 1.00
Gen Ed Area: NSM-MATH
Prereq: None

MATH222 Multivariable Calculus
This course treats the basic aspects of differential and integral calculus of functions of several real variables, with emphasis on the development of calculational skills. The areas covered include scalar- and vector-valued functions of several variables, their derivatives, and their integrals; the nature of extremal values of such functions and methods for calculating these values; and the theorems of Green and Stokes.

Offering: Host
Grading: A-F
Credits: 1.00
Gen Ed Area: NSM-MATH
Prereq: None

MATH223 Linear Algebra
An alternative to MATH221, this course will cover vector spaces, inner-product spaces, dimension theory, linear transformations and matrices, determinants, eigenvalues and eigenvectors, Hermitian and unitary transformations, and elementary spectral theory. It will present applications to analytic geometry, quadratic forms, and differential equations as time permits. The approach here is more abstract than that in MATH221, though many topics appear in both.

Offering: Host
Grading: A-F
Credits: 1.00
Gen Ed Area: NSM-MATH
Prereq: None

MATH225 Fundamentals of Analysis: An Introduction to Real Analysis
In this rigorous treatment of calculus, topics will include, but are not limited to, real numbers, limits, sequences and series, continuity and uniform continuity, differentiation, the Riemann integral, sequences and series of functions, pointwise and uniform convergence of functions, and interchange of limiting processes. MATH228 or comparable experience in writing mathematical proofs is strongly recommended for success in this course.

Offering: Host
Grading: A-F
Credits: 1.00
Gen Ed Area: NSM-MATH
Prereq: None
Prereq: (MATH222 AND MATH221) OR (MATH222 AND MATH223)

MATH226 Complex Analysis
This course will present the basic properties of complex analytic functions. We begin with the complex numbers themselves and elementary functions and their mapping properties, then discuss Cauchy’s integral theorem and Cauchy’s integral formula and applications, Taylor and Laurent series, zeros and poles and residue theorems, the argument principle, and Rouche’s theorem. In addition to a rigorous introduction to complex analysis, students will gain experience in communicating mathematical ideas and proofs effectively.

Offering: Host
Grading: A-F
Credits: 1.00
Gen Ed Area: NSM-MATH
Prereq: (MATH222 AND MATH221) OR (MATH222 AND MATH223)

MATH228 Discrete Mathematics
This course is a survey of discrete mathematical processes. Students will be introduced to the process of writing formal mathematical proofs, including
mathematical induction. Topics may include set theory, logic, number theory, finite fields, permutations, elementary combinatorics, or graph theory.

Offering: Host
Grading: A-F
Credits: 1.00
Gen Ed Area: NSM-MATH
Prereq: None

MATH229 Differential Equations
This course is an introduction to the theory of ordinary differential equations. Many aspects of mathematics and computer science are important in this discipline, and a broad view will be presented, in agreement with modern theory and practice. The only prerequisite for the course is multivariable calculus; all other necessary tools will be developed as the course proceeds.

Offering: Host
Grading: A-F
Credits: 1.00
Gen Ed Area: NSM-MATH
Prereq: MATH222

MATH231 An Introduction to Probability
This course teaches the basic theory of probability. Although the notions are simple and the mathematics involved require only a basic knowledge of the ideas of differential and integral calculus, a certain degree of mathematical maturity is necessary. The fundamental concepts to be studied are probability spaces and random variables, the most important ideas being conditional probability and independence. The main theorems we will study are the law of large numbers and the central limit theorem.

Offering: Host
Grading: A-F
Credits: 1.00
Gen Ed Area: NSM-MATH
Prereq: MATH222

MATH232 Mathematical Statistics
This course covers the basic notions of estimation, hypothesis testing, regression, analysis of variance, experimental design, and other topics in statistics from a rigorous mathematical perspective. This material will be supplemented by various case studies.

Offering: Host
Grading: A-F
Credits: 1.00
Gen Ed Area: NSM-MATH
Prereq: MATH222

MATH241 Set Theory
This course covers ordinal and cardinal numbers, cardinal arithmetic, theorems of Cantor and Schroeder-Bernstein, introduction to Zermelo-Fraenkel set theory, Axiom of Choice, and some infinitary combinatorics.

Offering: Host
Grading: A-F
Credits: 1.00
Gen Ed Area: NSM-MATH
Prereq: MATH222

MATH242 Mathematical Logic
This course is an introduction to mathematical logic, including first-order logic and model theory, axiomatic set theory, and, as time permits, Goedel's incompleteness theorem.

Offering: Host
Grading: A-F
Credits: 1.00
Gen Ed Area: NSM-MATH
Prereq: MATH241 OR MATH261 OR MATH228

MATH243 Mathematical Logic
This course is an introduction to mathematical logic, including first-order logic and model theory, axiomatic set theory, and, as time permits, Goedel's incompleteness theorem.

Offering: Host
Grading: A-F
Credits: 1.00
Gen Ed Area: NSM-MATH
Prereq: None

MATH244 Topology: Point Set
This is an introduction to general topology, the study of topological spaces. We will begin with the most natural examples, metric spaces, and then move on to more general spaces. This subject, fundamental to mathematics, enables us to discuss notions of continuity and approximation in their broadest sense. We will illustrate topology's power by seeing important applications to other areas of mathematics.

Offering: Host
Grading: A-F
Credits: 1.00
Gen Ed Area: NSM-MATH
Prereq: None

MATH245 Algebraic Topology
This course will use linear algebra to learn about interesting general properties of shapes. The major goal will be the classification of closed, bounded surfaces such as the sphere, the torus, the Klein bottle, and the projective plane. We will introduce the point-set topology and the new linear algebra that we need, but MATH221 or 223 is essential for this course.

Offering: Host
Grading: A-F
Credits: 1.00
Gen Ed Area: NSM-MATH
Prereq: (MATH221 AND MATH222) OR (MATH223 AND MATH222)

MATH246 Applied Topology
This course teaches the main concepts in Applied Topology. Students will learn to apply nonlinear methods to analyze the shape of data sets. These approaches are drawn from classical topology and focus on the shape in one of two ways: they either 'measure' it, that is count the occurrences of patterns within the data set; or build combinatorial representations of the data set. As an example of the former, we will look at persistent homology, whereas the latter will be represented by mapper. The topics covered include: basic notions from topology, simplicial complexes (Cech complexes, Vietoris-Rips complexes, etc.), homology, persistent homology and applications, mapper.

Offering: Host
Grading: A-F
Credits: 1.00
Gen Ed Area: None
Prereq: MATH223

MATH252 Differential Forms
This class will be an introduction to differential forms, a central tool in modern topology, geometry, and physics. The course begins where MATH222 ends, introducing the point-set topology and the new linear algebra that we need, but MATH221 or 223 is essential for this course. The only prerequisite is multivariable calculus, all other necessary tools will be developed as the course proceeds. The major goal will be the classification of closed, bounded surfaces such as the sphere, the torus, the Klein bottle, and the projective plane. We will introduce the point-set topology and the new linear algebra that we need, but MATH221 or 223 is essential for this course.

Offering: Host
Grading: A-F
Credits: 1.00
Gen Ed Area: NSM-MATH
Prereq: (MATH221 AND MATH222) OR (MATH223 AND MATH222)

MATH255 Fundamentals of Analysis II
Topics to be addressed include metric spaces (continuity, connectedness, and compactness), convergence of sequences and series of functions, spaces of functions and their topologies, the Lebesgue integral (on the line) and its basic convergence theorems, and Fourier series.

Offering: Host
Grading: A-F
Credits: 1.00
A graph is a set \(V \) of elements called vertices and a set \(E \) of pairs of elements of \(V \) called edges. From this simple definition, many elegant models have been developed. Indeed, graph theory is essential to applications of computer science to network analysis and planar mapping. This course will be an introduction to graph theory with an emphasis on the connections between graph theory and linear algebra.

Offering: Host
Grading: A-F
Credits: 1.00
Gen Ed Area: NSM-MATH
Prereq: MATH221 OR MATH223
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Offering</th>
<th>Grading</th>
<th>Credits</th>
<th>Gen Ed Area</th>
<th>Prereq</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH411</td>
<td>Group Tutorial, Undergraduate</td>
<td>Host</td>
<td>OPT</td>
<td></td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>MATH412</td>
<td>Group Tutorial, Undergraduate</td>
<td>Host</td>
<td>OPT</td>
<td></td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>MATH419</td>
<td>Student Forum</td>
<td>Host</td>
<td>Cr/U</td>
<td></td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>MATH421</td>
<td>Undergraduate Research, Science</td>
<td>Host</td>
<td>OPT</td>
<td></td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>MATH422</td>
<td>Undergraduate Research, Science</td>
<td>Host</td>
<td>OPT</td>
<td></td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>MATH423</td>
<td>Advanced Research Seminar, Undergraduate</td>
<td>Host</td>
<td>OPT</td>
<td></td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>MATH424</td>
<td>Advanced Research Seminar, Undergraduate</td>
<td>Host</td>
<td>OPT</td>
<td></td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>MATH465</td>
<td>Education in the Field, Undergraduate</td>
<td>Host</td>
<td>OPT</td>
<td>0.50</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>MATH466</td>
<td>Education in the Field, Undergraduate</td>
<td>Host</td>
<td>OPT</td>
<td></td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>MATH469</td>
<td>Education in the Field, Undergraduate</td>
<td>Host</td>
<td>OPT</td>
<td>1.00</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>MATH470</td>
<td>Independent Study, Undergraduate</td>
<td>Host</td>
<td>OPT</td>
<td></td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>MATH491</td>
<td>Teaching Apprentice Tutorial</td>
<td>Host</td>
<td>OPT</td>
<td></td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>MATH492</td>
<td>Teaching Apprentice Tutorial</td>
<td>Host</td>
<td>OPT</td>
<td></td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>MATH495</td>
<td>Research Apprentice, Undergraduate</td>
<td>Host</td>
<td>Cr/U</td>
<td></td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>MATH496</td>
<td>Research Apprentice, Undergraduate</td>
<td>Host</td>
<td>Cr/U</td>
<td></td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>MATH500</td>
<td>Graduate Pedagogy</td>
<td>Host</td>
<td>Cr/U</td>
<td>0.50</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>MATH501</td>
<td>Individual Tutorial, Graduate</td>
<td>Host</td>
<td>OPT</td>
<td></td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>MATH502</td>
<td>Individual Tutorial, Graduate</td>
<td>Host</td>
<td>OPT</td>
<td></td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>MATH503</td>
<td>Selected Topics, Graduate Sciences</td>
<td>Host</td>
<td>OPT</td>
<td></td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>MATH504</td>
<td>Selected Topics, Graduate Sciences</td>
<td>Host</td>
<td>OPT</td>
<td></td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>

Credits: 0.50
Gen Ed Area: None
Prereq: None

MATH495 Research Apprentice, Undergraduate
Project to be arranged in consultation with the tutor.
Offering: Host
Grading: Cr/U

MATH496 Research Apprentice, Undergraduate
Project to be arranged in consultation with the tutor.
Offering: Host
Grading: Cr/U

MATH500 Graduate Pedagogy
"The elements of good teaching will be discussed and demonstrated through lectures, practice teaching sessions, and discussions of problems encountered in the actual teaching environment. The staff consists of faculty and experienced graduate students. An integral part of the course is a required one-day workshop BEFORE the first day of formal classes.

Training in pedagogy in the first semester of attendance is required for all incoming Wesleyan MA and PhD students who have not already fulfilled this requirement at Wesleyan. BA/MA students are not required to get training in pedagogy but may choose to do so."
Offering: Crosslisting
Grading: Cr/U
Credits: 0.50
Gen Ed Area: None
Identical With: ASTR500, MB&B500, MUSC500, PHY550, PSYC500, CHEM500, BIOL500, E&ES500
Prereq: None

MATH501 Individual Tutorial, Graduate
Topic to be arranged in consultation with tutor.
Offering: Host
Grading: OPT

MATH502 Individual Tutorial, Graduate
Topic to be arranged in consultation with the tutor.
Offering: Host
Grading: OPT

MATH503 Selected Topics, Graduate Sciences
Topic to be arranged in consultation with the tutor. A seminar primarily concerned with papers taken from current research publications designed for, and required of, graduate students.
Offering: Host
Grading: OPT

MATH504 Selected Topics, Graduate Sciences
Topic to be arranged in consultation with the tutor. A seminar primarily concerned with papers taken from current research publications designed for, and required of, graduate students.
Offering: Host
Grading: OPT

MATH507 Topics in Combinatorics
Each year the topic will change.
Offering: Host
Grading: A-F
Credits: 1.00
Gen Ed Area: None
Prereq: None

MATH509 Model Theory
This course will emphasize model theoretic algebra. We will consider the model theory of fields, including algebraically closed, real-closed, and p-adically closed fields; algebraically closed valued fields; and also general questions of definability in fields. As time permits, we will consider more recent applications of model theory in number theory and arithmetic geometry. Ideally, the student should understand what it means to be first-order definable and should have the equivalent of a year's study of abstract algebra. To study various applications, it will be necessary to assume certain results from the areas of application—that is, without proving them ab initio.
Offering: Host
Grading: A-F
Credits: 1.00
Gen Ed Area: None
Prereq: None

MATH511 Group Tutorial, Graduate
Topic to be arranged in consultation with the tutor.
Offering: Host
Grading: OPT

MATH512 Group Tutorial, Graduate
Topic to be arranged in consultation with the tutor.
Offering: Host
Grading: OPT

MATH513 Analysis I
MATH513 and MATH514 constitute the first-year graduate course in real and complex analysis. One semester will be devoted to real analysis, covering such topics as Lebesgue measure and integration on the line, abstract measure spaces and integrals, product measures, decomposition and differentiation of measures, and elementary functional analysis. One semester will be devoted to complex analysis, covering such topics as analytic functions, power series, Mobius transformations, Cauchy's integral theorem and formula in its general form, classification of singularities, residues, argument principle, maximum modulus principle, Schwarz's lemma, and the Riemann mapping theorem.
Offering: Host
Grading: A-F
Credits: 1.00
Gen Ed Area: None
Prereq: None

MATH514 Analysis I
MATH513 and MATH514 constitute the first-year graduate course in real and complex analysis. One semester will be devoted to real analysis, covering such topics as Lebesgue measure and integration on the line, abstract measure spaces and integrals, product measures, decomposition and differentiation of measures, and elementary functional analysis. One semester will be devoted to complex analysis, covering such topics as analytic functions, power series, Mobius transformations, Cauchy's integral theorem and formula in its general form, classification of singularities, residues, argument principle, maximum modulus principle, Schwarz's lemma, and the Riemann mapping theorem.
Offering: Host
Grading: A-F
Credits: 1.00
Gen Ed Area: None
Prereq: None

MATH515 Analysis II
This is a topics course in analysis and varies from year to year. It may be repeated for credit.
Offering: Host
Grading: A-F
Credits: 1.00
Gen Ed Area: None
Prereq: None

MATH516 Analysis II
This is a topics course in analysis and varies from year to year. It may be repeated for credit.
Offering: Host
Grading: A-F
Credits: 1.00
Gen Ed Area: None
Prereq: None

MATH523 Topology I
This course is an introduction to topological spaces and the fundamental group; topological spaces, continuous maps, metric spaces; product and quotient spaces; compactness, connectedness, and separation axioms; and introduction to homotopy and the fundamental group.
Offering: Host
Grading: A-F
Credits: 1.00
Gen Ed Area: None
Prereq: None

MATH524 Topology I
A continuation of MATH523, this course will be an introduction to algebraic topology, concentrating on the fundamental group and homology.
Offering: Host
Grading: A-F
Credits: 1.00
Gen Ed Area: None
Prereq: None

MATH525 Topology II: Topics in Topology
This is a topics course in topology that varies from year to year. This course may be repeated for credit. Recent topics have included knot theory, homotopy theory, Lie groups, and topological graph theory.
Offering: Host
Grading: A-F
Credits: 1.00
Gen Ed Area: None
Prereq: None

MATH526 Topology II
This is a topics course in topology that varies from year to year. It may be repeated for credit.
Offering: Host
Grading: A-F
Credits: 1.00
Gen Ed Area: None
Prereq: None

MATH543 Algebra I
This course covers group theory including Sylow theorems, and basic ring and module theory, including structure of finitely generated modules over principal-ideal domains.
Offering: Host
Grading: A-F
Credits: 1.00
Gen Ed Area: None
Prereq: None

MATH544 Algebra I
This course studies Galois theory, finitely generated modules over principal-ideal domains, and other topics as time permits.
Offering: Host
Grading: A-F
Credits: 1.00
Gen Ed Area: None
Prereq: None

MATH545 Algebra II: Topics in Algebra
This is a topics course in algebra that varies from year to year. This course may be repeated for credit.
Offering: Host
Grading: A-F
Credits: 1.00
Gen Ed Area: None
Prereq: None

MATH546 Algebra II
This is a topics course in algebra that varies from year to year. It may be repeated for credit.
Offering: Host
Grading: A-F
Credits: 1.00
Gen Ed Area: None
Prereq: None

MATH549 Advanced Research Seminar, Graduate
Advanced research tutorial; project to be arranged in consultation with the tutor.
Offering: Host
Grading: OPT

MATH550 Advanced Research Seminar, Graduate
Advanced research tutorial; project to be arranged in consultation with the tutor.
Offering: Host
Grading: OPT

MATH572 Special Topics in Mathematics
This is a supervised reading course on advanced topics in number theory. This course may be repeated for credit.
Offering: Host
Grading: A-F
Credits: 1.00
Gen Ed Area: None
Prereq: None