The College of Integrative Sciences (CIS) aims to equip students with the creative and quantitative skills needed to address current and emerging global challenges in science and technology. These challenges are multifaceted, requiring problem-solving approaches that integrate expertise from multiple perspectives.

The CIS promotes an interdisciplinary and integrative approach to scholarship and learning across mathematics and the life, physical, and behavioral sciences. By encouraging creative synergies among faculty and students of disparate disciplines, the CIS academic structure complements existing departments and has the flexibility to evolve with the needs of an ever-changing world.

Research is key to the CIS. With a faculty mentor, student researchers pursue inquiry-based learning that explores open questions and provides new perspectives. They develop the necessary problem-solving skills and build expertise at the frontiers of science. Through research, students are transformed from consumers into creators of knowledge.

Students interested in the CIS are advised to follow a course of study that emphasizes a core science background, achieved by pursuing a major in one of the departments or programs in natural science and mathematics (NSM). The linked major offered by the CIS combines the intellectual depth in one area (the major) with breadth achieved through courses and research in the linked major.

FACULTY

Christopher James Chenier
BA, Bard College; MA, University of Delaware
Assistant Professor of the Practice in Integrative Sciences and IDEAS

Daniel Moller
MS, Louisiana Technical University; PHD, Louisiana Technical University
Assistant Professor of the Practice in Integrative Sciences

Robyn E. Ridley
BS, Columbia University; MS, University of California, San Diego; PHD, University of California, San Diego
Assistant Professor of the Practice in Integrative Sciences

Kelly M. Thayer
BA, Regis College; PHD, Wesleyan University
Associate Professor of the Practice in Integrative Sciences

AFFILIATED FACULTY

Gloster B. Aaron
BA, Oberlin College; PHD, University of Pennsylvania
Associate Professor of Biology; Associate Professor, Neuroscience and Behavior; Associate Professor, Integrative Sciences

Elan Louis Abrell
BA, University of California, Santa Cruz; JD, University of California, Berkeley; PHD, CUNY The Graduate Center
Assistant Professor of the Practice in Environmental Studies; Assistant Professor of the Practice, Science in Society; Assistant Professor of the Practice, Integrative Sciences; Coordinator, Animal Studies Minor

Phil Arevalo
PHD, Massachusetts Institute of Technology; SB, Brown University
Assistant Professor of the Practice in Biology and CIS; Assistant Professor of the Practice, Integrative Sciences

David L. Beveridge
BA, College of Wooster; MAA, Wesleyan University; PHD, University of Cincinnati
Joshua Boger University Professor of the Sciences and Mathematics; Emeritus; Professor, Integrative Sciences, Emeritus; Co-coordinator, Molecular Biophysics

Michael A. Calter
BS, University of Vermont; PHD, Harvard University
Beach Professor of Chemistry; Professor of Chemistry; Professor, Integrative Sciences

Frederick M. Cohan
BS, Stanford University; PHD, Harvard University
Huffington Foundation Professor in the College of the Environment; Professor of Biology; Professor, Environmental Studies; Professor, Integrative Sciences

Karen L. Collins
BA, Smith College; PHD, Massachusetts Institute of Technology
Edward Burr Van Vleck Professor of Mathematics; Professor of Mathematics; Professor, Integrative Sciences

Joseph David Coolon
BS, Kansas State University; PHD, Kansas State University
Associate Professor of Biology; Associate Professor, Integrative Sciences

Anthony P. Davis
BS, U.S. Coast Guard Academy; MS, Ohio State University; PHD, Wesleyan University
Associate Professor of the Practice in Chemistry; Associate Professor of the Practice, Integrative Sciences

Benjamin Ross Elling
BA, Cornell University; PHD, Stanford University
Assistant Professor of Chemistry; Assistant Professor, Integrative Sciences

Candice M. Etson
BA, New York University; BFA, New York University; PHD, Harvard University
Assistant Professor of Molecular Biology and Biochemistry; Assistant Professor, Integrative Sciences; Assistant Professor, Physics; Assistant Professor, Chemistry

Youssef Ezzyat
BSE, Princeton University; PHD, New York University
Assistant Professor of Psychology; Assistant Professor, Neuroscience and Behavior; Assistant Professor, Integrative Sciences

Cameron Donnay Hill
BA, Yale University; PHD, University of California, Berkeley
Associate Professor of Mathematics; Associate Professor, Integrative Sciences

Scott G. Holmes
BS, College of William and Mary; PHD, University of Virginia
Professor of Molecular Biology and Biochemistry; Chair, Molecular Biology and Biochemistry; Professor, Integrative Sciences

Mark A. Hovey
BS, Ohio State University; PHD, Massachusetts Institute of Technology
Associate Provost for Budget and Personnel; Professor of Mathematics; Professor, Integrative Sciences

Meredith Hughes
BS, Yale University; PHD, Harvard University
<table>
<thead>
<tr>
<th>Name</th>
<th>Title and Institutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laverne Melón</td>
<td>Assistant Professor of Psychology; Assistant Professor, Integrative Sciences</td>
</tr>
<tr>
<td>Alexis May</td>
<td>Assistant Professor of Computer Science; Assistant Professor, Integrative Sciences</td>
</tr>
<tr>
<td>Barbara Jean Juhasz</td>
<td>Associate Professor of the Practice in Astronomy; Associate Professor of the Practice</td>
</tr>
<tr>
<td>Roy E. Kilgard</td>
<td>Associate Professor of Psychology; Assistant Professor, Integrative Sciences</td>
</tr>
<tr>
<td>Kyungmi Kim</td>
<td>Assistant Professor of Psychology; Assistant Professor, Integrative Sciences</td>
</tr>
<tr>
<td>Tsampikos Kottos</td>
<td>Professor of Science and Society; Professor of Physics; Professor, Integrative Sciences</td>
</tr>
<tr>
<td>Daniel Krizanc</td>
<td>Professor of Science and Society; Professor of Physics; Professor, Integrative Sciences</td>
</tr>
<tr>
<td>Robert P. Lane</td>
<td>Associate Professor of Earth and Environmental Sciences; Associate Professor, Integrative</td>
</tr>
<tr>
<td>James Lipton</td>
<td>Professor of Molecular Biology and Biochemistry; Professor, Integrative Sciences</td>
</tr>
<tr>
<td>Amy MacQueen</td>
<td>Associate Professor of Molecular Biology and Biochemistry; Associate Professor, Integrative</td>
</tr>
<tr>
<td>Victoria Ursula Manfredi</td>
<td>Assistant Professor of Computer Science; Assistant Professor, Integrative Sciences</td>
</tr>
<tr>
<td>Alexcis May</td>
<td>Assistant Professor of Psychology; Assistant Professor, Integrative Sciences</td>
</tr>
<tr>
<td>Laverne Melón</td>
<td>BA, Middlebury College; MS, SUNY at Binghamton University; PHD, Purdue University</td>
</tr>
<tr>
<td>Jennifer Mitchel</td>
<td>Assistant Professor of Biology; Assistant Professor, Neuroscience and Behavior; Assistant</td>
</tr>
<tr>
<td>Edward C. Moran</td>
<td>Assistant Professor of Biology; Assistant Professor, Integrative Sciences</td>
</tr>
<tr>
<td>Tsampikos Kottos</td>
<td>Dean of the Natural Sciences and Mathematics; Professor of Biology; Emerita/us Faculty</td>
</tr>
<tr>
<td>Andrea Negrete</td>
<td>Professor of Chemistry; Chair, Chemistry; Professor, Integrative Sciences</td>
</tr>
<tr>
<td>Brian Hale Northrop</td>
<td>Professor of Chemistry; Chair, Chemistry; Professor, Integrative Sciences</td>
</tr>
<tr>
<td>Stewart E. Novick</td>
<td>Professor of Chemistry; Emerita/us Faculty in Chemistry; Professor, Integrative Sciences</td>
</tr>
<tr>
<td>Alison L. O’Neil</td>
<td>Associate Professor of Chemistry; Assistant Professor, Neuroscience and Behavior; Assistant</td>
</tr>
<tr>
<td>Donald B. Oliver</td>
<td>Associate Professor of Molecular Biology and Biochemistry; Assistant Professor, Integrative</td>
</tr>
<tr>
<td>Rich Olson</td>
<td>Associate Professor of Molecular Biology and Biochemistry; Associate Professor, Integrative</td>
</tr>
</tbody>
</table>

College of Integrative Sciences

Laverne Melón

BS, University of Witwatersrand; PHD, Cambridge University
Associate Professor of Biology; Associate Professor, Integrative Sciences

Barbara Jean Juhasz

BA, Binghamton University; MA, University of Massachusetts Amherst; PHD, University of Massachusetts Amherst
Jeffrey L. Shames Professor of Civic Engagement; Professor of Psychology; Professor, Education Studies; Professor, Neuroscience and Behavior; Professor, Integrative Sciences; Coordinator, Civic Engagement

Roy E. Kilgard

BA, Valdosta St University; PHD, University of Leicester
Associate Professor of the Practice in Astronomy; Associate Professor of the Practice in Astronomy

Kyungmi Kim

MA, Yonsei University; MPHIL, Yale University; MS, Yale University; PHD, Yale University
Assistant Professor of Psychology; Assistant Professor, Integrative Sciences

Tsampikos Kottos

BA, University of Crete; MS, University of Crete; PHD, University of Crete
Lauren B. Dachs Professor of Science and Society; Professor of Physics; Professor, Integrative Sciences; Professor, Mathematics

Robert P. Lane

BA, Colgate University; PHD, California Institute Tech
Professor of Molecular Biology and Biochemistry; Professor, Integrative Sciences

James Lipton

BS, U Nebraska Lincoln; MSC, Cornell University; PHD, Cornell University
Professor of Computer Science; Professor, Integrative Sciences

Amy MacQueen

BA, Columbia University; PHD, Stanford University
Associate Professor of Molecular Biology and Biochemistry; Associate Professor, Integrative Sciences

Victoria Ursula Manfredi

BA, Smith College; MS, University of Massachusetts Amherst; PHD, University of Massachusetts Amherst
Assistant Professor of Computer Science; Assistant Professor, Integrative Sciences

Alexcis May

BA, Wesleyan University; MA, University British Columbia; PHD, University British Columbia
Assistant Professor of Psychology; Assistant Professor, Integrative Sciences

Laverne Melón

BS, University of Witwatersrand; PHD, Cambridge University
Associate Professor of Biology; Associate Professor, Integrative Sciences

Barbara Jean Juhasz

BA, Binghamton University; MA, University of Massachusetts Amherst; PHD, University of Massachusetts Amherst
Jeffrey L. Shames Professor of Civic Engagement; Professor of Psychology; Professor, Education Studies; Professor, Neuroscience and Behavior; Professor, Integrative Sciences; Coordinator, Civic Engagement

Roy E. Kilgard

BA, Valdosta St University; PHD, University of Leicester
Associate Professor of the Practice in Astronomy; Associate Professor of the Practice in Astronomy

Kyungmi Kim

MA, Yonsei University; MPHIL, Yale University; MS, Yale University; PHD, Yale University
Assistant Professor of Psychology; Assistant Professor, Integrative Sciences

Tsampikos Kottos

BA, University of Crete; MS, University of Crete; PHD, University of Crete
Lauren B. Dachs Professor of Science and Society; Professor of Physics; Professor, Integrative Sciences; Professor, Mathematics

Robert P. Lane

BA, Colgate University; PHD, California Institute Tech
Professor of Molecular Biology and Biochemistry; Professor, Integrative Sciences

James Lipton

BS, U Nebraska Lincoln; MSC, Cornell University; PHD, Cornell University
Professor of Computer Science; Professor, Integrative Sciences

Amy MacQueen

BA, Columbia University; PHD, Stanford University
Associate Professor of Molecular Biology and Biochemistry; Associate Professor, Integrative Sciences

Victoria Ursula Manfredi

BA, Smith College; MS, University of Massachusetts Amherst; PHD, University of Massachusetts Amherst
Assistant Professor of Computer Science; Assistant Professor, Integrative Sciences

Alexcis May

BA, Wesleyan University; MA, University British Columbia; PHD, University British Columbia
Assistant Professor of Psychology; Assistant Professor, Integrative Sciences

Laverne Melón

BS, University of Witwatersrand; PHD, Cambridge University
Associate Professor of Biology; Associate Professor, Integrative Sciences
Teresita Padilla-Benavides
BS, Escuela Nacional de Ciencias B; MS, Centro de Investigacion y Estu; PHD, Centro de Investigacion y Estu
Assistant Professor of Molecular Biology Biochemistry; Assistant Professor, Integrative Sciences

Michael James Perez
BA, University Texas Arlington; PHD, Texas A&M University
Assistant Professor of Psychology; Assistant Professor, Integrative Sciences

Michelle Louise Personick
BA, Middlebury College; PHD, Northwestern University
Associate Professor of Chemistry; Associate Professor, Integrative Sciences

Seth Redfield
BM, New Eng Consv Music; BS, Tufts University; MS, University of Colorado Boulder; PHD, University of Colorado Boulder
Professor of Astronomy; Director, College of Integrative Sciences; Professor, Integrative Sciences; Co-Coordinator, Planetary Science

Meng-ju Renee Sher
BA, Wesleyan University; MA, Harvard University; PHD, Harvard University
Assistant Professor of Physics; Assistant Professor, Integrative Sciences; Assistant Professor, Environmental Studies

Colin A. Smith
BA, New York University; PHD, University of California, San Francisco
Assistant Professor of Chemistry; Assistant Professor, Molecular Biology and Biochemistry; Assistant Professor, Integrative Sciences

Francis W. Starr
BS, Carnegie Mellon University; MS, Boston University; PHD, Boston University
Foss Professor of Physics; Professor of Physics; Chair, Physics; Professor, Integrative Sciences; Professor, Molecular Biology and Biochemistry; Director, Integrated Design, Engineering and Applied Science

Brian A. Stewart
BS, Stanford University; PHD, Massachusetts Institute of Technology
Professor of Physics; Professor, Environmental Studies; Professor, Integrative Sciences

Erika A. Taylor
BS, University of Michigan; PHD, University of Illinois Urbana
Associate Professor of Chemistry; Faculty Director, McNair Program; Associate Professor, Environmental Studies; Associate Professor, Integrative Sciences

Greg A. Voth
BS, Wheaton College; MS, Cornell University; PHD, Cornell University
Professor of Physics; Professor, Integrative Sciences

Michael P. Weir
BS, University of Sussex; PHD, University of Pennsylvania
Professor of Biology; Professor, Integrative Sciences; Co-Coordinator, Informatics and Modeling

Sarah Wellons
AB, Princeton University; MA, Harvard University; PHD, Harvard University
Assistant Professor of Astronomy; Assistant Professor, Integrative Sciences

T. David Westmoreland
BS, Massachusetts Institute of Technology; PHD, University of North Carolina at Chapel Hill
Associate Professor of Chemistry; Associate Professor, Integrative Sciences

VISITING FACULTY

Christopher S. Weaver
BS, Hobart and William Smith Colleges; CAS, Wesleyan University; MALS, Wesleyan University; SM, Massachusetts Institute of Technology
Distinguished Professor of Computational Media in the College of Integrative Sciences

EMERITI

Ellen Thomas
BS, University of Utrecht; MS, University of Utrecht; PHD, University of Utrecht
Smith Curator of Paleontology of the Joe Webb Peoples Museum of Natural History; Harold T. Stearns Professor of Integrative Sciences, Emerita

• Undergraduate College of Integrative Sciences Major (https://catalog.wesleyan.edu/departments/cis/ugrd-cis/)

Master of Arts in the College of Integrative Sciences (https://catalog.wesleyan.edu/departments/cis/grad-cis-ma/)

CIS115 Experiential Design and Application
This course, co-taught with Director of Physical Plant Operations Mike Conte, will allow students to work directly with Facilities employees to design and execute modifications and repairs to existing Wesleyan spaces. The specific projects will change from semester to semester, but could include designing and building informal learning spaces, and planning and carrying out repairs and modifications to mechanical and plumbing systems. Students will learn design and engineering by carrying out projects to improve Wesleyan’s facilities. Students must be willing to work with tools and machinery with supervision. The grading in this quarter-credit repeatable course will be based primarily on active participation, and the class meetings will be held on location and at times built around participants’ schedules.
Offering: Host
Grading: Cr/U
Credits: 0.25
Gen Ed Area: NSM-CIS
Prereq: None

CIS121 Wesleyan Mathematics and Science Scholars Colloquium I
This weekly colloquium of participants in the Wesleyan Mathematics and Science Scholars (WesMaSS) Program will provide participants with a framework for taking full advantage of the educational opportunities in the natural sciences and mathematics available at Wesleyan. Class sessions and assignments are designed to help students to develop effective individual and group study skills, to promote cohort-building, and to navigate the “hidden curriculum” in higher education.
Offering: Host
Grading: Cr/U
Credits: 0.25
Gen Ed Area: NSM-CIS
Prereq: None

CIS122 Wesleyan Mathematics and Science Scholars Colloquium II
This weekly colloquium of participants in the Wesleyan Mathematics and Science Scholars (WesMaSS) Program will be focused on strategies for success in science and math higher education.
Offering: Host
Grading: Cr/U
Credits: 0.25
Gen Ed Area: NSM-CIS
Prereq: None

CIS135 Mindfulness
During this course, students will be introduced to various techniques of mindfulness practice and awareness, including sitting meditation and yoga. These modalities are designed to aid in stress and anxiety reduction and, when practiced diligently, may also offer opportunities for greater self-awareness and personal development. The goal is to give students not only a peer community but also a contemplative and metacognitive toolbox that is portable, replicable, and sustainable. Students will gain an understanding of the roles these practices can play in leading a happier, healthier, and more fulfilling life.

Offering: Crosslisting
Grading: Cr/U
Credits: 0.50
Gen Ed Area: NSM-CIS
Identical With: CSP113S
Prereq: None

CIS135Z Introduction to Mindfulness
In this retreat-style, experiential course, students delve into a set of practices meant to cultivate self-awareness, alleviate the impact of the stress response, and move attention to the present moment. During this 4-week class on contemplative practices, students will be introduced to various individual and relational techniques developed to cultivate non-judgemental attention and self-awareness in the present moment.

Offering: Crosslisting
Grading: Cr/U
Credits: 1.00
Gen Ed Area: SBS-CIS
Identical With: CSP113SZ
Prereq: None

CIS154 Working with MATLAB
The content of this course focuses on learning the basics of utilizing MATLAB to program and solve basic problems. We will operate on the assumption that students have no prior experience with programming. The goals of the course will be to develop algorithmic thinking, problem solving, and quantitative skills within the context of MATLAB. The course will cover essential mechanics of programming, many of which are common to all programming languages, as well as some selected advanced topics.

Offering: Crosslisting
Grading: OPT
Credits: 0.50
Gen Ed Area: NSM-QAC, SBS-QAC
Identical With: QAC154, IDEA154
Prereq: None

CIS160 Life in the Oceans in the Anthropocene and Beyond
Little is known about life in the deep sea, the largest habitat on Earth, even about the largest animals living there, such as the giant squid. Humans, however, are severely affecting even these most remote areas of our planet, and wildlife populations in the oceans have been badly damaged by human activity. We will look at the amazing diversity of ocean life and the disparate building plans of its animals, and see how oceanic ecosystems are fundamentally different from land ecosystems. Then we will explore how human actions are affecting oceanic ecosystems directly, for instance by overfishing (especially of large predators and filter feeders), addition of nutrients (eutrophication) and pollutants, and the spread of invasive species, as well as indirectly, through emission of carbon compounds into the atmosphere. Rising atmospheric CO2 levels lead to ocean acidification and global warming, affecting the all-important metabolic rates of ocean life, as well as oceanic oxygen levels and stratification, thus productivity.

We will try to predict the composition of future ecosystems by looking at ecosystem changes during periods of rapid warming in the geological past and see whether future ecosystems will become dominated by jellyfish, as they were 600 million years ago.

Offering: Crosslisting
Grading: A-F
Credits: 1.00
Gen Ed Area: NSM-EEES
Identical With: E&ES160, BIOL160
Prereq: None

CIS170 Introduction to Mechanical Design and Engineering
This course will provide a hands-on introduction to design and engineering. Students will engage in individual and team projects in a studio environment where we seek to develop a shared practice and understanding of the engineering design process. We will study biological organisms to find inspiration for design of hoppers, swimmers, and climbers. Students will build skills using computer-aided design (CAD) software and using tools for fabrication and prototyping including laser cutting and 3D printing. We will also hone skills in identifying which scientific and engineering principles need to be understood to achieve design goals.

Offering: Crosslisting
Grading: Cr/U
Credits: 1.00
Gen Ed Area: NSM-CIS
Identical With: IDEA170, PHYS170
Prereq: None

CIS170Z Introduction to Design and Engineering
This course will provide a hands-on introduction to design and engineering. Students will engage in individual and team projects in a studio environment where we seek to develop a shared practice and understanding of the engineering design process. We will study biological organisms to find inspiration for design of hoppers, swimmers, and climbers. Students will build skills using computer-aided design (CAD) software and using tools for fabrication and prototyping including laser cutting and 3D printing. We will also hone skills in identifying which scientific and engineering principles need to be understood to achieve design goals.

Offering: Crosslisting
Grading: OPT
Credits: 1.00
Gen Ed Area: NSM-CIS
Identical With: IDEA170Z, PHYS170Z
Prereq: None

CIS173 Introduction to Sensors, Measurement, and Data Analysis
This course is an engineering fundamentals course supporting the Integrated Design, Engineering, and Applied Science (IDEAS) minor. It will involve a sequence of hands-on projects that introduce students to basic measurement devices and data analysis techniques using inexpensive modern sensors, a microprocessing platform (Arduino), and a computational software package (Matlab). The course will provide foundational knowledge of available resources and techniques that allow students to more confidently implement measurement systems in subsequent courses of the IDEAS minor and better understand experimental devices used in scientific research activities.

Offering: Crosslisting
Grading: OPT
Credits: 1.00
Gen Ed Area: NSM-CIS
Identical With: IDEA173
Prereq: None
CIS175 Introduction to Electrical Design & Engineering
Students will learn about engineering mechanics, electronic control systems, and physical actuators (e.g., for movement) using a microprocessor platform, sensors and motors. The final project will require a student team to ideate, design, analyze, and optimize a mechatronic system. This course will allow students to better understand components, methods, and challenges in mechatronics systems commonly found in automation and robotics.
Offering: Crosslisting
Grading: Cr/U
Credits: 1.00
Gen Ed Area: NSM-CIS
Identical With: IDEA175
Prereq: None

CIS185 Form and Code
This introductory survey explores practices in design and digital media through a sequence of design exercises, workshops, and hands-on projects. Advancing towards an independent final project, participants will hone their skills as makers and thinkers while developing a portfolio of original work for both print and web. While primarily concerned with visual experimentation and expression, this course exposes students to critical topics in media and design through readings, seminars and student presentations. Techniques surveyed in this course include: digital imaging and animation (Adobe Creative Cloud), creative coding (Processing), digital printing, and light fabrication.
Offering: Crosslisting
Grading: OPT
Credits: 1.00
Gen Ed Area: HA-CIS
Identical With: IDEA185
Prereq: None

CIS185Z Form and Code
This introductory survey explores practices in design and digital media through a sequence of design exercises, workshops, and hands-on projects. Advancing towards an independent final project, participants will hone their skills as makers and thinkers while developing a portfolio of original work for both print and web. While primarily concerned with visual experimentation and expression, this course exposes students to critical topics in media and design through readings, seminars, and student presentations. Techniques surveyed in this course include: digital graphics, creative coding, and digital fabrication (if taught in person).

Students will require access to a personal computer and Adobe Creative Cloud. If the course runs remotely, students are responsible for locating these resources individually.
Offering: Crosslisting
Grading: OPT
Credits: 1.00
Gen Ed Area: NSM-CIS
Identical With: IDEA185Z
Prereq: None

CIS210 How Things Fail: Mechanics and Materials
This lab/lecture engineering course is a foundational cornerstone of structural analysis and mechanical design. It will provide students with a theoretical and practical understanding of static equilibrium force systems, material response to loading, and analysis of failure modes for each of the fundamental types of stress and strain (axial, flexural, and torsional). These skills are vital for students from a range of disciplines, including mechanical engineering and architecture. The final project will require the design, implementation, and performance testing of an optimized structural system model, such as a truss bridge, building, or other structure.
Offering: Crosslisting

Grading: OPT
Credits: 1.00
Gen Ed Area: NSM-IDEA
Identical With: IDEA210, PHYS210
Prereq: IDEA170 AND (PHYS111 OR PHYS113)

CIS221 Research Frontiers in the Sciences I
This seminar is designed to introduce students to the exciting and cutting-edge research activity at Wesleyan across all the sciences and mathematics, and to introduce faculty with active research labs to students interested in working in a lab. The course showcases what research at the college level actually entails, and which projects Wesleyan faculty are actively researching. CIS 221 is scheduled in the fall, CIS 222 in the spring. Both are gateway classes to admission into the CIS, but also recommended to students broadly interested in the sciences who have not yet decided on a major. There is no overlap in speakers between CIS 221 and CIS 222, and students may take both.
Offering: Host
Grading: Cr/U
Credits: 0.50
Gen Ed Area: NSM-CIS
Prereq: None

CIS222 Research Frontiers in the Sciences II
This seminar is designed to introduce students to the exciting and cutting-edge research activity at Wesleyan across all the sciences and mathematics, and to introduce faculty with active research labs to students interested in working in a lab. The course showcases what research at the college level actually entails, and which projects Wesleyan faculty are actively researching. CIS 221 is scheduled in the fall, CIS 222 in the spring. Both are gateway classes to admission into the CIS, but also recommended to students broadly interested in the sciences who have not yet decided on a major. There is no overlap in speakers between CIS 221 and CIS 222, and students may take both.
Offering: Host
Grading: Cr/U
Credits: 0.50
Gen Ed Area: NSM-CIS
Prereq: None

CIS239 Proseminar: Machine Learning Methods for Audio and Video Analysis
In this course, students are introduced to machine learning techniques to analyze image, audio, and video data. The course is organized in three parts, and in each part we will first introduce how these nontraditional data can be converted into appropriate (mathematical) objects suitable for computer processing, and, particularly, for the application of machine learning techniques. Students then will learn and work with a number of machine learning algorithms and deep learning methods that are effective for image and audio analysis. We will also explore major applications of these techniques such as object detection, face recognition, image classification, audio classification, speaker detection, and speech recognition.
Offering: Crosslisting
Grading: A-F
Credits: 1.00
Gen Ed Area: NSM-QAC
Identical With: QAC239
Prereq: COMP112 OR QAC155 OR QAC156

CIS241 Introduction to Network Analysis
This is an interdisciplinary hands-on course examining the application of network analysis in various fields. It will introduce students to the formalism of networks, software for network analysis, and applications from a range of disciplines (history, sociology, public health, business, political science). We will review the main concepts in network analysis and learn how to use the software (e.g., network analysis and GIS libraries in R) and will work through practice problems involving data from several sources (Twitter, Facebook, airlines,
medical innovation, historical data). Upon completion of the course, students will be able to conduct independent research in their fields using network analysis tools.

Offering: Crosslisting
Grading: A-F
Credits: 1.00
Gen Ed Area: SBS-QAC
Identical With: QAC241
Prereq: None

CIS251 Data Visualization: An Introduction
This course will introduce students to the principles and tools necessary to present quantitative information in a visual way. While tables and graphs are widely used in our daily lives, it takes skill to deconstruct what story is being told. It also takes a perceptive eye to know when information is being misrepresented with particular graphics. The main goals of the course are for students to learn how to present information efficiently and accurately so that we enhance our understanding of complex quantitative information and to become proficient with data visualization tools. Beginning with basic graphing tools, we will work our way up to constructing map visualizations and interactive graphs. This course will require a substantial amount of computation in R. No prior programming experience is necessary, but learning does require willingness and time.

Offering: Crosslisting
Grading: A-F
Credits: 1.00
Gen Ed Area: NSM-QAC, SBS-QAC
Identical With: QAC251
Prereq: None

CIS251Z Data Visualization: An Introduction
This course will introduce students to the principles and tools necessary to present quantitative information in a visual way. While tables and graphs are widely used in our daily lives, it takes skill to deconstruct what story is being told. It also takes a perceptive eye to know when information is being misrepresented with particular graphics. The main goals of the course are for students to learn how to present information efficiently and accurately so that we enhance our understanding of complex quantitative information, and to become proficient with data visualization tools. Beginning with basic graphing tools, we will work our way up to constructing map visualizations and interactive graphs. This course will require a substantial amount of computation in R. No prior programming experience is necessary, but learning does require willingness and time.

Offering: Crosslisting
Grading: A-F
Credits: 1.00
Gen Ed Area: NSM-QAC, SBS-QAC
Identical With: QAC251
Prereq: None

CIS263 Demystifying Data: Introductory Data Analysis and Modeling
How do scientists make sense of the data they collect, especially as datasets grow in size and complexity? In this course, students will learn fundamental concepts in data collection, statistics, and modeling through hands-on analysis of publicly available datasets from the COVID-19 pandemic. We will cover the effects of biases in data collection, models of epidemic growth and spread, and the principles of studying a rapidly evolving pathogen. While we will use motivating examples from the life sciences, students can expect to learn techniques and ways of thinking that will form a foundation for evaluating and analyzing data across scientific disciplines. Students will learn the basics of using the R programming language to visualize, analyze, and model data, so no previous programming experience is expected.

Offering: Host
Grading: A-F
Credits: 1.00
Gen Ed Area: NSM-BIOL

CIS265 Bioinformatics Programming
This course is an introduction to bioinformatics and programming for students with interest in the life sciences. It introduces program areas and conceptual frameworks in bioinformatics. The course assumes little or no prior programming experience and will introduce the fundamental concepts and mechanisms of computer programs and examples (e.g., sequence matching and manipulation, database access, output parsing, dynamic programming) frequently encountered in the field of bioinformatics.

Offering: Crosslisting
Grading: A-F
Credits: 1.00
Gen Ed Area: NSM-BIOL
Identical With: BIOL265, MB&B265, COMP113
Prereq: [MB&B181 or BIOL181]

CIS266 Bioinformatics
This course is an introduction to bioinformatics for students with interest in the life sciences. The course is similar to BIOL265 but only meets in the second half of the semester (with BIOL266) and is designed for students with programming background, ideally in Python. The course introduces program areas and conceptual frameworks in bioinformatics and discusses programming approaches used in bioinformatics such as sequence matching and manipulation algorithms using dynamic programming, clustering analysis of gene expression data, analysis of genetic nets using Object Oriented Programming, and sequence analysis using Hidden Markov Models, Regular Expressions, and information theory.

Offering: Crosslisting
Grading: A-F
Credits: 0.50
Gen Ed Area: NSM-BIOL
Identical With: BIOL266, COMP266, MB&B266
Prereq: [MB&B181 OR BIOL181]

CIS270 Systems Biology with Programming
Systems—collections of entities that interact to form an interconnected whole—are present at every scale of organization in the life sciences. Biologists can take advantage of computational and mathematical tools to understand how these systems function and predict how they might change over time. This approach is critical in applications ranging from epidemic modeling to evolutionary theory. In this course, students will learn how simple rules and interactions can lead to complex behavior using examples from three main areas: regulatory networks, population genetics, and ecology. Students will spend the first part of the course learning how to program in Python in order to model, simulate, and visualize these systems. No previous programming experience is expected.

Offering: Crosslisting
Grading: A-F
Credits: 1.00
Gen Ed Area: NSM-BIOL
Identical With: BIOL270
Prereq: [BIOL181 AND BIOL182]

CIS271 Systems Biology with Programming
This course is an introduction to bioinformatics for students with interest in the life sciences. The course is similar to BIOL265 but only meets in the second half of the semester (with BIOL266) and is designed for students with programming background, ideally in Python. The course introduces program areas and conceptual frameworks in bioinformatics and discusses programming approaches used in bioinformatics such as sequence matching and manipulation algorithms using dynamic programming, clustering analysis of gene expression data, analysis of genetic nets using Object Oriented Programming, and sequence analysis using Hidden Markov Models, Regular Expressions, and information theory.

Offering: Crosslisting
Grading: A-F
Credits: 1.00
Gen Ed Area: NSM-BIOL
Identical With: BIOL265, MB&B265, COMP113
Prereq: [MB&B181 or BIOL181]

CIS270 Systems Biology with Programming
Systems—collections of entities that interact to form an interconnected whole—are present at every scale of organization in the life sciences. Biologists can take advantage of computational and mathematical tools to understand how these systems function and predict how they might change over time. This approach is critical in applications ranging from epidemic modeling to evolutionary theory. In this course, students will learn how simple
rules and interactions can lead to complex behavior using examples from three main areas: regulatory networks, population genetics, and ecology.

Offering: Crosslisting
Grading: A-F
Credits: 0.50
Gen Ed Area: NSM-BIOL
Identical With: QAC307
Prereq: QAC201 OR PSYC200 OR MATH132 OR ECON300

CIS310 Genomics Analysis
This course is an introduction to genomics and analysis for students with interest in life sciences. It introduces current applications of genomics techniques, covers how to build a genomics workflow, and introduces statistical analyses in R programming language. This course assumes little or no prior programming experience and will provide hands-on experience in taking raw next-generation sequencing data through a custom workflow and ending with analyses in R statistical software. This course emphasizes hands-on computational methodology, bioinformatics data analysis, and interpretation of quantitative information. The primary method of evaluation is through written work and weekly homework assignments and the course will increase students skill in scientific writing and scholarship. Classes will consist of lectures, discussion groups and cloud based computational projects designed to train transferable skills in big data analysis. Lectures, labs, assignments and assessments will promote deep knowledge in genomics and informatics, gaining understanding in the scientific process, thinking analytically and critically about biological questions, and formulating original ideas and testing them with big data. Skills gained during the course will include quantitative, statistical and graphical tools, scientific writing, oral communication and deep thinking about ethics in a genomics-enabled world.

Offering: Crosslisting
Grading: A-F
Credits: 1.00
Gen Ed Area: NSM-BIOL
Identical With: BIOL310, MB&B311
Prereq: [MB&B181 or BIOL181]

CIS320 Advanced Academic Writing
This course is designed to help students master the skills needed for thesis-level academic writing. The course uses an example-driven approach emphasizing an iterative revision process, with an emphasis on expository writing skills appropriate for publishable literature. Students will be encouraged to focus on their own independent research work as subject matter of writing exercises.

Offering: Crosslisting
Grading: OPT
Credits: 1.00
Gen Ed Area: NSM-CIS
Identical With: CIS520
Prereq: None

CIS321 Special Topics in Integrative Sciences
This is a special topics course open to all Wesleyan students to explore subjects that are at the boundaries of the canonical scientific disciplines, that are complex, and that have paramount societal impact (e.g., pandemics and public health, climate change, the search for life in the universe, and artificial intelligence and automation). There are also societal issues that deeply impact and are vital for all the sciences (e.g., diversity, equity and inclusion of our communities, federal funding, and science policy). We will collectively identify one or two topics that we would like to focus on together as a class. With disciplinary humility, we will construct a syllabus that will include readings, classroom discussions, presentations, guest lectures, and writing that will integrate our knowledge, methodologies, and action across the sciences. This course is part of the CIS major, and it is expected that all senior CIS majors will be enrolled.

Offering: Host
Grading: Cr/U
Credits: 0.50
Gen Ed Area: NSM-CIS
Prereq: None

CIS322 Senior Colloquium II: Integrative Sciences
This is a special colloquium course focused on skills associated with science communication and, in particular, communicating student’s own research to various audiences. Given the broad benefits that research has on society, and
the federal funding derived from tax-payer dollars, scientists have an ethical obligation to communicate the results of their work to various stakeholders. In addition, scientists find that communicating and discussing their work with others is an invaluable method of idea-generation. Finally, sharing our work with others is fun and gratifying, particularly at the end of a large project (e.g., a thesis)! These skills transcend our particular departments and are common across STEM fields. With disciplinary humility, we will engage in skill-building using various resources available to us on campus. There will be an opportunity for students to identify skill sets that they are particularly interested in, so that they can be incorporated into the course. There will be readings, classroom discussions, presentations, guest lectures, and visits to centers on campus. This course is part of the CIS major, and it is expected that all senior CIS majors will be enrolled.

Offering: Host
Grading: Cr/U
Credits: 0.50
Gen Ed Area: NSM-CIS

CIS323 Bayesian Data Analysis: A Primer
This course introduces the applied principles of Bayesian statistical analysis. The Bayesian paradigm is particularly appealing in research where prior research and historical data are available on parameters of interest. This course will teach students appropriate techniques for analyzing data of this nature as well as broaden computational skills in R. The course will lay the foundation for Bayesian data analysis that students can use to further develop skills in decision making.

Offering: Crosslisting
Grading: A-F
Credits: 0.50
Gen Ed Area: NSM-QAC, SBS-QAC
Identical With: QAC323
Prereq: MATH132 OR ECON300 OR [GOVT367 or QAC302]

CIS327 Evolutionary and Ecological Bioinformatics
Bioinformatic analysis of gene sequences and gene expression patterns has added enormously to our understanding of ecology and evolution. For example, through bioinformatic analysis of gene sequences, we can now reconstruct the evolutionary history of physiology, even though no traces of physiology exist in the fossil record. We can determine the adaptive history of one gene and all the gene’s descendants. We can now construct the evolutionary tree of all of life. Bioinformatics is particularly promising for analysis of the ecology and biodiversity of microbial communities, since well over 99 percent of microorganisms cannot be cultured; our only knowledge of these organisms is through analysis of their gene sequences and gene expression patterns. For example, even when we cannot culture most of a microbial community, we can determine which metabolic pathways are of greatest significance through analysis of community-level gene expression. All these research programs are made accessible not only by breakthroughs in molecular technology but also by innovation in the design of computer algorithms. This course, team-taught by an evolutionary biologist and a computer scientist, will present how bioinformatics is revolutionizing evolutionary and ecological investigation and will present the design and construction of bioinformatic computer algorithms underlying the revolution in biology. Students will learn algorithms for reconstructing phylogeny, for sequence alignment, and for analysis of genomes, and students will have an opportunity to create their own algorithms.

Offering: Crosslisting
Grading: A-F
Credits: 1.00
Gen Ed Area: NSM-BIOL
Identical With: BIOL327, COMP327, BIOL527, COMP527
Prereq: [BIOL182 or MBB182] OR [BIOL196 or MBB196] OR COMP112 OR COMP211

CIS331 Video Games as/and the Moving Image: Art, Aesthetics, and Design
Video games are a mess. As a relatively new medium available on a range of platforms and in contexts ranging from the living room to the line for the bathroom, video games make new but confusing contributions to the meaning and possibilities of the moving image. We will work to understand what games are, what they can do, and how successful games do what they do best. Students will complete game design exercises, create rapid prototypes, playtest their games, and iteratively improve their games with play and their players in mind. They will complete analyses of games and game design projects both alone and in groups and participate in studio-style critiques of one another’s work. Experience with computer programming is helpful but not essential.

Offering: Crosslisting
Grading: A-F
Credits: 0.50
Gen Ed Area: HA-FILM
Identical With: FILM331
Prereq: None

CIS340 STEM Equity and Inclusion
This course is open to all students at Wesleyan interested in learning about equity and inclusion in STEM. A weekly seminar will provide an overview of topics related to STEM equity, including the demographics of STEM fields, relevant sociology/psychology research (implicit bias, stereotype threat, imposter syndrome, mindset, etc.), ethics, social justice, and best practices for inclusive departments and programs. Students will be required to develop and evaluate proposals for activities to increase STEM equity and inclusion at Wesleyan, using the information provided during the seminar component of the course.

Offering: Host
Grading: Cr/U
Credits: 0.50
Gen Ed Area: None
Identical With: CIS340
Prereq: None

CIS342 Molecules to Medicine
This course will explore the process of drug development, including target selection, lead discovery using computer-based methods and combinatorial chemistry/high-throughput screening, organic synthesis, bioavailability, clinical trials, and other factors (some economics and politics) involved in bringing a drug to the marketplace. Critical consideration of the variables to contend with at each step will be described and discussed, including aspects of research ethics and patent law. The basic science of molecular recognition, computer-aided drug design, and the role of factors from synthetic chemistry to toxicology will be presented. Case studies of the development of drugs recently successful in making the journey from molecule to medicine will be discussed, as well as the story of some that did not, and why. Emerging new design strategies such as fusion-protein therapies, crisper technology, and enhanced use of rational design and combinatorial methods will be emphasized, and how pharmaceutical research is evolving in the postgenomic era, particularly with biologics. Job opportunities in the pharmaceutical industry will be discussed.

Offering: Crosslisting
Grading: A-F
Credits: 1.00
Gen Ed Area: NSM-CHEM
Identical With: CHEM342, BIOL342, MB&B342
Prereq: CHEM252 OR MB&B208

CIS350 Computational Media: Videogame Development
This course examines the interplay of art and science in the development of contemporary videogames using the Unity development platform and commercial artistic game tools. Students develop a comprehensive understanding of computational media, including legal and commercial aspects, combined with hands-on experience in a creative process that integrates design,
art, and coding. There will be discussions with invited industry leaders in various subject areas. Students will have the opportunity to work as part of development teams and create working prototypes to better understand the challenges and rewards of producing graphic interactive software within a professional context.

Offering: Crosslisting
Grading: A-F
Credits: 2.00
Gen Ed Area: NSM-NSM
Identical With: IDEAS350, FILM250, COMP350
Prereq: None

CIS375 Mass Extinctions in the Oceans: Animal Origins to Anthropocene
Geoscientists are debating whether we are living in the Anthropocene, defined as a period during which humans are having a significant effect on atmospheric, geologic, hydrologic, and biospheric earth system processes. There is considerable discussion whether we are indeed affecting the biosphere to such an extent that life on Earth will suffer an extinction similar in magnitude to those that have occurred during earth history. Studies of the fossil record provide unique evidence that is used to evaluate the large extinctions of the past and compare to them to ongoing extinction processes, extinctions rates and patterns, and magnitude. Organisms with hard skeletons are most easily and most abundantly preserved in the rock record. Many of these are invertebrates that lived in the oceans (e.g., clams, sea urchins, corals). In the first part of this course, students will become familiar with the nature of the fossil record, the most common marine animals in the fossil record, and their evolution and diversification. Lectures will be combined with studying fossils. In the second part of the course, possible causes for mass extinction will be considered, together with their specific effects on environments and biota, and these predicted effects will be compared to what has been observed. Potential causes include asteroid and comet impacts, large volcanic eruptions, "hypercanes," and "methane ocean eruptions," and more exotic processes. Students will present in class on these topics, and we will compare rates and magnitude of environmental change with severity and patterns of extinction.

Offering: Crosslisting
Grading: A-F
Credits: 1.00
Gen Ed Area: NSM-NSM
Identical With: E&ES376
Prereq: E&ES101 OR E&ES115 OR ASTR155 OR MB&B181

CIS400 Professional Development and Graduate School Preparation Seminar
The objectives of this course are (1) to build a supportive cohort that will help students sustain their goals when they enter graduate school and (2) to provide students with skills they will need to succeed in graduate school. Students will work on writing, presentation, and discussion skills. This will be done by reading classic books on writing, critiquing the ability of different figures and graphs to convey information, reading and discussing scientific papers, and giving research presentations.

Offering: Host
Grading: A-F
Credits: 0.50
Gen Ed Area: NSM-NSM
Prereq: None

CIS401 Individual Tutorial, Undergraduate
Topic to be arranged in consultation with the tutor.

Offering: Host
Grading: OPT

CIS402 Individual Tutorial, Undergraduate
Topic to be arranged in consultation with the tutor.

Offering: Host
Grading: OPT

CIS408 Senior Tutorial (downgraded thesis)
Downgraded Senior Thesis Tutorial - Project to be arranged in consultation with the tutor. Only enrolled in through the Honors Coordinator.

Offering: Host
Grading: A-F

CIS409 Senior Thesis Tutorial
Topic to be arranged in consultation with the tutor.

Offering: Host
Grading: OPT

CIS410 Senior Thesis Tutorial
Topic to be arranged in consultation with the tutor.

Offering: Host
Grading: OPT

CIS411 Group Tutorial, Undergraduate
Topic to be arranged in consultation with the tutor.

Offering: Host
Grading: OPT

CIS412 Group Tutorial, Undergraduate
Topic to be arranged in consultation with the tutor.

Offering: Host
Grading: OPT

CIS419 Student Forum
Student-run group tutorial, sponsored by a faculty member and approved by the chair of a department or program.

Offering: Host
Grading: Cr/U

CIS420 Student Forum
Student-run group tutorial, sponsored by a faculty member and approved by the chair of a department or program.

Offering: Host
Grading: Cr/U

CIS423 Advanced Research Seminar, Undergraduate
Advanced research tutorial; project to be arranged in consultation with the tutor.

Offering: Host
Grading: OPT

CIS424 Advanced Research Seminar, Undergraduate
Advanced research tutorial; project to be arranged in consultation with the tutor.

Offering: Host
Grading: OPT

CIS492 Teaching Apprentice Tutorial
The teaching apprentice program offers undergraduate students the opportunity to assist in teaching a faculty member's course for academic credit.

Offering: Host
Grading: OPT

CIS520 Advanced Academic Writing
This course is designed to help students master the skills needed for thesis-level academic writing. The course uses an example-driven approach emphasizing an iterative revision process, with an emphasis on expository writing skills appropriate for publishable literature. Students will be encouraged to focus on their own independent research work as subject matter of writing exercises.

Offering: Host
Grading: OPT
Credits: 1.00
Gen Ed Area: NSM-NSM
Identical With: CIS320
Prereq: None
CIS540 STEM Equity and Inclusion
This course is open to all students at Wesleyan interested in learning about equity and inclusion in STEM. A weekly seminar will provide an overview of topics related to STEM equity, including the demographics of STEM fields, relevant sociology/psychology research (implicit bias, stereotype threat, impostor syndrome, mindset, etc.), ethics, social justice, and best practices for inclusive departments and programs. Students will be required to develop and evaluate proposals for activities to increase STEM equity and inclusion at Wesleyan, using the information provided during the seminar component of the course.
Offering: Crosslisting
Grading: Cr/U
Credits: 0.50
Gen Ed Area: None
Identical With: CIS340
Prereq: None

CIS549 Advanced Research Seminar, Graduate
Advanced research tutorial; project to be arranged in consultation with the tutor.
Offering: Host
Grading: OPT

CIS550 Advanced Research Seminar, Graduate
Advanced research tutorial; project to be arranged in consultation with the tutor.
Offering: Host
Grading: OPT

IDEA110 Vectors to Volumes: The Fundamentals of Digital Fabrication
This project-based course will cover the fundamentals of digital fabrication in a hands-on introduction to software-driven object making. The central concern will be process rather than concept, with a firm focus on how instead of why, as well as best safety practices. Instruction will be given in four areas sequentially, each building on the last: Vector Design & Execution, 3D Modeling & Printing, CNC Wood Routing, and CNC Metal Milling. Machine setup and best practices will be taught alongside foundational knowledge of applications such as Adobe Illustrator, Adobe Photoshop, Vectric VCarve, Autodesk Fusion360, and Ultimaker Cura. Throughout the course, there will be a consistent emphasis on fabrication methods and finishing techniques.
Offering: Host
Grading: Cr/U
Credits: 0.50
Gen Ed Area: HA-ART, NSM-IDEA
Prereq: None

IDEA120 Ecological Design I: Being at Home in the World
Being at Home in the World is an introduction to the skills and thinking involved in the ecologically responsible creation of objects. This course is intended to provide a foundational understanding of the language of design, sources of materials, and energy systems. The studio encourages students to develop a rigorous, iterative working method to deeply analyze the nature of land and resources, explore options, and test ideas. This process of making is complemented and supported by an introduction to the history and theory of design, training with techniques and equipment, and active practice in keeping a sketchbook. Early exercises and projects in the course build familiarity and confidence with analytical drawing, making, and modeling techniques, which build toward the creation of a novel piece of design work presented at the final review.
Offering: Crosslisting
Grading: A-F
Credits: 1.00
Gen Ed Area: HA-ART
Identical With: ARST220, ENV232
Prereq: None

IDEA154 Working with MATLAB
The content of this course focuses on learning the basics of utilizing MATLAB to program and solve basic problems. We will operate on the assumption that students have no prior experience with programming. The goals of the course will be to develop algorithmic thinking, problem solving, and quantitative skills within the context of MATLAB. The course will cover essential mechanics of programming, many of which are common to all programming languages, as well as some selected advanced topics. With the expectation that students with a broad background with various motivating factors lead them to enroll in the course, students will be invited to apply the skills learned in the course to completing the culminating final project related to their specific interests.
Offering: Crosslisting
Grading: OPT
Credits: 0.50
Gen Ed Area: NSM-QAC, SBS-QAC
Identical With: QAC154, CIS154
Prereq: None

IDEA160 Product Design I
In this introductory product design course, students will experience basic design processes such as problem identification and possible resolutions; the use of design development and communication skills via design observation and research; iterative process and prototyping; and representation and presentation in two and three-dimensional forms. Students will explore how design can play a role in our community and how it can impact our society. Students will work both individually and collaboratively in a studio environment. Field trips to New York City fabricators, galleries, and workshops may be expected as part of this course.
Offering: Crosslisting
Grading: A-F
Credits: 1.00
Gen Ed Area: HA-ART
Identical With: ARST270
Prereq: None

IDEA170 Introduction to Mechanical Design and Engineering
This course will provide a hands-on introduction to design and engineering. Students will engage in individual and team projects in a studio environment where we seek to develop a shared practice and understanding of the engineering design process. We will study biological organisms to find inspiration for design of hoppers, swimmers, and climbers. Students will build skills using computer-aided design (CAD) software and using tools for fabrication and prototyping including laser cutting and 3D printing. We will also hone skills in identifying which scientific and engineering principles need to be understood to achieve design goals.
Offering: Host
Grading: Cr/U
Credits: 1.00
Gen Ed Area: NSM-IDEA
Identical With: PHYS170, CIS170
Prereq: None

IDEA170Z Introduction to Design and Engineering
This course will provide a hands-on introduction to design and engineering. Students will engage in individual and team projects in a studio environment where we seek to develop a shared practice and understanding of the engineering design process. We will study biological organisms to find inspiration for design of hoppers, swimmers, and climbers. Students will build skills using computer-aided design (CAD) software and using tools for fabrication and prototyping including laser cutting and 3D printing. We will also hone skills in identifying which scientific and engineering principles need to be understood to achieve design goals.
Offering: Host
Grading: OPT
Credits: 1.00
IDEA185 Form and Code
This introductory survey explores practices in design and digital media through a sequence of design exercises, workshops, and hands-on projects. Advancing towards an independent final project, participants will hone their skills as makers and thinkers while developing a portfolio of original work for both print and web. While primarily concerned with visual experimentation and expression, this course exposes students to critical topics in media and design through readings, seminars and student presentations. Techniques surveyed in this course include: digital imaging and animation (Adobe Creative Cloud), creative coding (Processing), digital printing, and light fabrication.
Offering: Host
Grading: OPT
Credits: 1.00
Gen Ed Area: HA-CIS
Identical With: CIS185
Prereq: None

IDEA185Z Form and Code
This introductory survey explores practices in design and digital media through a sequence of design exercises, workshops, and hands-on projects. Advancing towards an independent final project, participants will hone their skills as makers and thinkers while developing a portfolio of original work for both print and web. While primarily concerned with visual experimentation and expression, this course exposes students to critical topics in media and design through readings, seminars and student presentations. Techniques surveyed in this course include: digital imaging and animation (Adobe Creative Cloud), creative coding (Processing), digital printing, and light fabrication.
Offering: Host
Grading: OPT
Credits: 1.00
Gen Ed Area: HA-CIS
Identical With: CIS185
Prereq: None

IDEA180 Design Studies
This course examines the human dimensions of engineering and design by looking at the ways artifacts are designed, produced, circulated, and used in context. Rather than a comprehensive survey of movements or paradigms in the history of design, this course employs a thematic approach to understanding the ways objects can articulate and reflect social and cultural concerns. Through a series of readings, projects, lectures, and seminars, we will study the surprising ways everyday objects influence and articulate our identities, desires, biases, and experiences.

This course is intended to support students in developing a critical toolkit for use as designers, users, consumers, and citizens. Throughout the term we will seek to challenge our assumptions about the politics of design and interrogate the ways its products mediate and are changed through human activity. We will write about and visualize these relationships, thinking critically how objects are made, what makes them relevant, and whether things have the power to change our economic, environmental, and social realities.
Offering: Host
Grading: A-F
Credits: 1.00
Gen Ed Area: SBS-IDEA
Prereq: None

IDEA185 Form and Code
This introductory survey explores practices in design and digital media through a sequence of design exercises, workshops, and hands-on projects. Advancing towards an independent final project, participants will hone their skills as makers and thinkers while developing a portfolio of original work for both print and web. While primarily concerned with visual experimentation and expression, this course exposes students to critical topics in media and design through readings, seminars and student presentations. Techniques surveyed in this course include: digital imaging and animation (Adobe Creative Cloud), creative coding (Processing), digital printing, and light fabrication.
Offering: Host
Grading: OPT
Credits: 1.00
Gen Ed Area: HA-CIS
Identical With: CIS185
Prereq: None

IDEA190 Digital Foundations
This course introduces the foundations of digital art through contemporary artistic practice. Students will research the history of digital art and examine relationships of digital media and contemporary art. The class has a theoretical focus on machine use within the process of art making while building foundational digital skills. Projects will focus on four key areas including: Digital Imaging, 3D Modeling and Virtual Design, Time Based Media, and Digital Fabrication. Building on these four areas the course will culminate in an individualized research based final project and presentation. Through experimentation, critical analysis, critique and peer review; students will generate a unique portfolio of digital art works.
Offering: Crosslisting
Grading: OPT
Credits: 1.00
Gen Ed Area: HA-ART
Identical With: ARST190
Prereq: None

IDEA190Z Digital Foundations
This introduction to the digital studio engages software and electronic media as an expanded field of creative production in contemporary art and design. Through a sequence of workshops, exercises, and hands-on digital projects, students will develop their critical and creative toolkits and learn to conceive, refine, and present original work. Open to all skill levels, this course prioritizes sustained and rigorous engagement with digital practice as well as conceptual and formal problem-solving.
Workshops in image manipulation, compositing, motion graphics, and visual communication will be led synchronously online by the instructor. This will be
in which they will either adapt existing games for specific learning outcomes or create brand new educational games. The course will be conducted in English and games will be created in English.

Offering: Crosslisting
Grading: OPT
Credits: 1.00
Gen Ed Area: SBS-EDST
Identical With: EDST210
Prereq: None

IDEA210 How Things Fail: Mechanics and Materials
This lab/lecture engineering course is a foundational cornerstone of structural analysis and mechanical design. It will provide students with a theoretical and practical understanding of static equilibrium force systems, material response to loading, and analysis of failure modes for each of the fundamental types of stress and strain (axial, flexural, and torsional). These skills are vital for students from a range of disciplines, including mechanical engineering and architecture. The final project will require the design, implementation, and performance testing of an optimized structural system model, such as a truss bridge, building, or other structure.

Offering: Host
Grading: OPT
Credits: 1.00
Gen Ed Area: NSM-IDEA
Identical With: CIS210, PHYS210
Prereq: IDEA170 AND (PHYS111 OR PHYS113)

IDEA215 Introduction to Sensors, Measurement, and Data Analysis
This course is an engineering fundamentals course supporting the Integrated Design, Engineering, Arts, and Society (IDEAS) minor. It will involve a sequence of hands-on projects that introduce students to basic measurement devices and data analysis techniques using sensors, a microprocessing platform, and computational software. The course will provide foundational knowledge of available resources and signal processing techniques that allow students to more confidently implement measurement systems in subsequent courses of the IDEAS minor and better understand experimental devices used in scientific research activities. Students will complete a final team project of their choice (with approval) exploring areas of interest in measurement, data analysis, machine learning or other avenues. Some previous programming experience is expected. Prior experience in IDEA175 or with Arduino, Raspberry Pi or other physical computing platforms are preferred, but not required.

Offering: Host
Grading: OPT
Credits: 1.00
Gen Ed Area: NSM-CIS
Prereq: None

IDEA221 A Thousand Years of Iteration: Design for an Uncertain Future
The climate emergency is a product of design. Centuries worth of aesthetic and industrial innovation have created extractive infrastructure, efficient machines, and disposable products that make it increasingly easy to consume energy and resources on a global scale. As new conversations about just transitions, a circular economy, and a Green New Deal have begun to proliferate among
designers, the discipline’s troubled relationship to notions of “progress” remains largely unquestioned.

This reading- and research-intensive studio asks students to examine this history of technology and to critically evaluate shifting theoretical perspectives on nature and human development as they relate to design. Topics will include the lifespan of buildings and products, relationships with and obligations to materials and resources, and strategies for de-growth in indigenous and vernacular design precedents. These will be studied through assigned readings and in-class discussion, a series of design exercises, and the production of a final project from materials immediately at hand in Middletown.

Offering: Crosslisting
Grading: A-F
Credits: 1.00
Gen Ed Area: HA-ART
Identical With: ARST221, ENV227
Prereq: None

IDEA222 Fluid Mechanics: Theory and Applications
This course focuses on the behavior of fluids under various conditions. Students will develop a framework to analyze situations involving stationary (fluid statics) or moving fluids (fluid dynamics), discover tools used to predict fluid behavior, and learn how to interpret aspects of this behavior. Homework problems and examples reviewed in-class will help students connect theory with real-world applications, particularly in the areas of mechanical, structural/civil, and aerospace engineering. At the end of this course, students should have the ability to solve simple fluid problems and apply those solutions in complex engineering situations.

Offering: Host
Grading: A-F
Credits: 1.00
Gen Ed Area: None
Prereq: None

IDEA233 Studies in Computer-based Modelling and Digital Fabrication
This course operates at the intersection of design and production, introducing students to digital tools critical to contemporary architecture and design. Throughout the semester, students will develop a series of projects that fluidly transition between design, representation, and fabrication with an emphasis on understanding how conceptual design interfaces with material properties. The course will offer a platform for students to research, experiment, and, ultimately, leverage the potential of digital tools toward a wide array of fields and disciplines. Students will be expected to utilize the Digital Design Studio’s resources, including 3D printers, laser cutter, and 4-Axis CNC mill, as well as a selection of fabrication equipment housed in the school’s metal and wood shops to represent, model, and realize a series of design projects.

Offering: Crosslisting
Grading: OPT
Credits: 1.00
Gen Ed Area: HA-ART
Identical With: ARST233
Prereq: None

IDEA235 Activism and Theories of Change
In this course we will explore strategies and theories of change that shape social justice movements, with particular reference to recent movements in the United States. We will discuss the benefits and risks of the many available strategies including direct action, grassroots mobilization, impact litigation, legislative campaigns, electoral campaigns, artistic protest, and public education. What strategic, ethical, or moral questions are raised by various types of protest and communications? The instructor will draw on her own experiences as an activist for women’s rights, queer rights, and economic justice. In addition, the course will feature a guest teacher for a segment of the semester: Beverly Tillery, Executive Director of the Anti-Violence project in NYC will look at the ways BIPOC and Queer BIPOC communities are reshaping the social justice landscape by addressing the safety of trans women, challenging the gender binary and reforming and ending the carceral legal system. We will allow time to discuss events that may occur in real time over the course of the semester. This course will be relevant to students interested in public policy, feminism, gender and sexuality studies, and other social sciences, and will provide useful insight for future organizers and activists, lawyers, and public policy makers.

Offering: Crosslisting
Grading: OPT
Credits: 1.00
Gen Ed Area: SBS-ALLB
Identical With: CSPL235, FGSS236, AFAM235
Prereq: None

IDEA236 Fast & Furious
Fast and Furious is a class which explores the power of the multiple through the production of zines, posters, t-shirts, tote bags, pins and more. Beginning in the 1930s, the production of zines mainly in the sci-fi fan world became popular after the advent of the mimeograph—the first widely available duplicating machine. This way of making content was able to circumvent mainstream and institutional publishing models creating channels for more creatives to distribute their work. Today, there are even more technologies that can be used in the production of zeitgeist material. In this class, we will learn how to create with a Xerox machine, silkscreen, letterpress, polymer, and more. In each assignment we will contend with the power of quantity. What does it mean to make five of something? Ten? Fifty? One hundred? We will also experiment with format. How can a message be told through a wearable garment? How does the narrative change when it’s a tote bag? And finally, we will explore the poetics of distribution. What are the artistic possibilities of a zine when it can be sent through the mail or left in a pile for the public?

Offering: Crosslisting
Grading: OPT
Credits: 1.00
Gen Ed Area: HA-ART
Identical With: ARST236
Prereq: None

IDEA243 Introduction to Graphic Design
Introduction to Graphic Design is a course that aims to open a window of understanding and communication through the visual language. It will serve as a beginner’s guide to an abundant artistic tool box, while attempting to expand your perceptions of graphic design and offering innovative outlooks to convey your ideas visually. The course will guide students through the fundamentals of designing programs as well as traditional art methods. This will be an active making and researching time for students to be exposed to the potential of the medium, as well as broadening its boundary.

Offering: Crosslisting
Grading: OPT
Credits: 1.00
Gen Ed Area: HA-ART
Identical With: ARST243
Prereq: None

IDEA261 Science Materials For a Malagasy Classroom
Students will design and produce a variety of educational science materials to be used in a fifth grade classroom in Madagascar. These items include a science logo, bookmarks, educational science games, posters, and a comic book with conservation themes for children. Students who are interested in design and natural history as a means through which to communicate science themes on wildlife endemism, evolution, and climate change would be appropriate for this course. All students will need to conduct independent research into science topics, distill down the salient features, and use that information to design
IDEA285 Digital Projects Lab
This intermediate course in design engages form and process as vital lineaments in digital images, systems, and objects today. Through a series of short, hands-on, thematic projects, students will move past the basics of digital technique and challenge themselves to articulate how and why things appear as they do. Rather than focus on specific tools or software, assignments will straddle creative platforms and media, incorporating methods such as live signal processing, data moshing, remixing, and interaction design. Early assignments will address narrow thematic concerns while a long-term final project driven by students’ own directives will be developed and executed in the second half of term.

Offering: Crosslisting
Grading: A-F
Credits: 1.00
Gen Ed Area: NSM-IDEA
ARCP291, ANTH291, CEAS291, ENV5291
Prereq: None

IDEA301 Unsettling Times: Clocks for Ghosts, Monsters, and Aliens
Tracking the rhythms, cycles, and ruptures of collective life is essential for studies of sociocultural and environmental dynamics. Yet such studies are mostly undertaken with the unquestioned assumption that Western apparatuses of time reckoning and historical periodization can be applied as universal and stable frames of reference for all kinds of phenomena. Temporal units of years, months, days, minutes are used, rendering insensible relations that do not align with such metrics. These simplifying moves limit our capacity to understand continuity and change, and places countless lives and landscapes at great risk.
This seminar draws from the social and natural sciences, humanities, and arts to unsettle these simplifications. Through readings and audio/video screenings, we will consider how apparatuses for time keeping (or clocks, broadly defined) become power tools, creating haunted, monstrous, and alienated subjects. Through exercises and field walks throughout the semester, students are invited to notice, record, and engage with multiple temporalities of more-than-human worlds. The final project will involve research and design of a speculative clock for futures otherwise.

Offering: Crosslisting
Grading: A-F
Credits: 1.00
Gen Ed Area: SBS-SISP
Identical With: SISP301
Prereq: None

IDEA308 Comparative Urban Policy
Cities are home to more than half of the world's population, generate more than 80% of world GDP, and are responsible for 75% of global CO2 emissions. Once viewed as minor political players with parochial concerns, they are now--individually and collectively--major players on the global stage. This course will examine how cities are coping with the major policy issues governing our lives--from waste management and public safety to energy and housing policy. We will be examining how policies differ between big cities and small cities, what cities in the global north are learning from the cities in the global south, and how cities are bypassing toxic partisan politics in their nations' capitals to form global networks promoting positive change. The class will involve local field trips and participant observation to see how some of these urban issues are playing out in the city of Middletown.

Offering: Crosslisting
Grading: A-F
Credits: 1.00
Gen Ed Area: SBS-GOVT
Identical With: GOVT308, CEAS308, ENVS308
Prereq: None

IDEA320 Ecological Design II: Worn Out/Broken In
This course will function as a design studio that examines the afterlife of material production. While designers have traditionally focused their attention on the creation, distribution, and consumption of new products, this course asks students to carefully consider everything that follows those acts. By scrutinizing the use, care, maintenance, repair, and eventual demise of designed objects, students come to understand the intended and unintended consequences of making. Rigorous observation and research lead to the creation of analytic drawings and models for presentation at project reviews.

Offering: Crosslisting
Grading: A-F
Credits: 1.00
Gen Ed Area: HA-ART
Identical With: ARST320, ENVS321
Prereq: ARST320 OR ARST325 OR ARST220

IDEA350 Computational Media: Videogame Development
This course examines the interplay of art and science in the development of contemporary videogames using the Unity development platform and commercial artistic game tools. Students develop a comprehensive understanding of computational media, including legal and commercial aspects, combined with hands-on experience in a creative process that integrates design, art, and coding. There will be discussions with invited industry leaders in various subject areas. Students will have the opportunity to work as part of development teams and create working prototypes to better understand the challenges and rewards of producing graphic interactive software within a professional context.

Offering: Host