Chemistry is the science of molecules. Scientific, medical, and technological phenomena ultimately are understood in terms of molecular structure and interactions. Understanding chemistry is essential to effective work in all sciences, and some knowledge of chemistry is useful in such fields as law, government, business, and art. Many aspects of our high-technology society can be understood better from the viewpoint of chemistry.

The following are typical important chemical problems: the structure of DNA, the molecular details of the resistance of bacteria to penicillin, the chemistry of biofuel production, the synthesis of new molecules that might be expected to have medical applications, the consequences of putting electrons and photons into molecules, the details of what happens as two molecules collide, the fundamental basis of the energies of molecules, and the synthesis of nanomaterials. These are all areas of research by Wesleyan faculty and their undergraduate and graduate coworkers.

FACULTY

Michael A. Calter
BS, University of Vermont; PHD, Harvard University
Professor of Chemistry; Chair, Chemistry; Professor, Integrative Sciences

Anthony P. Davis
BS, U.S. Coast Guard Academy; MS, Ohio State University; PHD, Wesleyan University
Associate Professor of the Practice in Chemistry

Carlos Alberto Jimenez Hoyos
MA, Rice University; PHD, Rice University
Assistant Professor of Chemistry

Joseph L. Knee
BA, SUNY at Binghamton; PHD, SUNY at Stony Brook
Dean of the Natural Sciences and Mathematics; Beach Professor of Chemistry; Professor of Chemistry

Brian Hale Northrop
BA, Middlebury College; PhD, University of California LA
Associate Professor of Chemistry; Associate Professor, Integrative Sciences

Stewart E. Novick
BS, SUNY at Stony Brook; MA, Harvard University; MAA, Wesleyan University; PHD, Harvard University
Joshua Boger University Professor of the Sciences and Mathematics; Professor of Chemistry; Professor, Integrative Sciences

Alison L. O’Neil
BS, Binghamton University; PHD, Montana State University
Assistant Professor of Chemistry; Assistant Professor, Neuroscience and Behavior; Assistant Professor, College of Integrative Sciences

Michelle Louise Personick
BA, Middlebury College; PHD, Northwestern University
Assistant Professor of Chemistry; Assistant Professor, Integrative Sciences

Andrea Roberts
BS, Cornell University; MS, Polytechnic University; PHD, Wesleyan University
Associate Professor of the Practice in Chemistry

Irina M. Russu

AFFILIATED FACULTY

Candice M Etson
BA, New York University; BFA, New York University; PHD, Harvard University
Assistant Professor of Physics; Assistant Professor, Chemistry; Assistant Professor, Integrative Sciences; Assistant Professor, Molecular Biology and Biochemistry

VISITING FACULTY

Stephen Anthony Cooke
Visiting Scholar in Chemistry

Breanna Craft
Visiting Scholar in Chemistry

Michael J. Frisch
Visiting Professor in Chemistry

Anisha Gupta
BS, Panjab University; MS, Panjab University; PHD, Carnegie Mellon University
Visiting Assistant Professor of Chemistry

Rachel D. Lowe
Research Scientist in Chemistry

Melisa Moreno Garcia
Visiting Scholar in Chemistry

EMERITI

David L. Beveridge
BA, College of Wooster; MAA, Wesleyan University; PHD, University Cincinnati
Joshua Boger University Professor of the Sciences and Mathematics, Emeritus;
Co-Director, Susan B. and William K. Wasch Center for Retired Faculty; Co-Coordinator, Molecular Biophysics

Philip H. Bolton
BS, Michigan State University; MAA, Wesleyan University; PHD, University of California, San Diego
Professor of Chemistry, Emeritus

Joseph W. Bruno
BA, Augustana College; MAA, Wesleyan University; PHD, Northwestern University
Professor of Chemistry, Emeritus

Albert J. Fry
BS, University of Michigan; MAA, Wesleyan University; PHD, University of Wisconsin at Madison
E. B. Nye Professor of Chemistry, Emeritus

George A. Peterssson
BS, City College; PHD, California Institute Tech
Fisk Professor of Natural Science, Emeritus

Rex F. Pratt
BS, University of Melbourne; MAA, Wesleyan University; PHD, University of Melbourne
Beach Professor of Chemistry, Emeritus

Wallace C. Pringle
BA, Middlebury College; MAA, Wesleyan University; PHD, Massachusetts Institute of Technology
Professor of Chemistry, Emeritus

UNDERGRADUATE PROGRAM
DEPARTMENTAL ADVISING EXPERTS

Michael Calter, Organic; Stewart Novick, Physical; T. David Westmoreland, Inorganic, Analytical and General

- Undergraduate Chemistry Major (catalog.wesleyan.edu/departments/chem/ugrd-chem)
- Doctor of Philosophy in Chemistry (catalog.wesleyan.edu/departments/chem/grad-chem)
- Master of Arts in Chemistry (catalog.wesleyan.edu/departments/chem/grad-chem-ma)

CHEM118 DNA
This course provides an interdisciplinary view of the DNA molecule and its impact upon medicine, law, philosophy, agriculture, ethics, politics, and society at large. The course has two parts. In the first part, we will learn the chemistry and physics of DNA and the processes by which the information stored in DNA is expressed. In the second part of the course, we will discuss what DNA has done and still can do for us—for example, treat and prevent genetic diseases, improve our food through genetic engineering, achieve criminal justice through genetic fingerprinting, understand the evolutionary origin of humans, and enrich our idea of what it is to be human. The course assumes basic knowledge of chemistry and biology at the general high school level. Independent exploration and inquiry are encouraged.
Offering: Host
Grading: A-F
Credits: 1.00
Gen Ed Area: NSM-CHEM
Prereq: None

CHEM119 Biology and Chemistry in the Modern World: A Survey of Drugs and Disease
This course will cover a wide range of topics of current interest that are at the intersection of biology and chemistry. In particular, the molecular basis of issues related to drugs and disease will form a focus of the course. Topics to be discussed will include psychoactive and performance-enhancing drugs, mad cow, cancer, viral and bacterial diseases, and the chemistry of foods.
Offering: Crosslisting
Grading: A-F
Credits: 1.00
Gen Ed Area: NSM-CHEM
Identical With: MB&B119
Prereq: None

CHEM120 Science and Humanity
This course will provide an introduction to the important concepts of writing in science. We will discuss the major components of scientific writing while viewing scientific issues from an analytical and interdisciplinary perspective. We will discuss contemporary problems influenced by technological advantages and the effects they have on science and humanity. This course assumes basic knowledge in chemistry and biology at the high school level.
Offering: Host
Grading: A-F
Credits: 1.00
Gen Ed Area: NSM-CHEM
Prereq: None

CHEM121F Chemophobia: Precaution or Panic? (FYS)
Chemophobia is an aversion to or prejudice against chemistry and chemicals. There is abundant evidence of this across the mass media, and while some important issues have been brought to the forefront in this way, the hype and misunderstanding surrounding other issues has had adverse effects on our society. This course will look at both sides of the debate surrounding chemicals in our everyday lives—in our food, in our consumer products, and in our environment. We will begin with a brief history of the environmental movement to see how we arrived at our current perceptions of chemistry, and then we will delve into the facts and science behind some of the topical issues of concern to differentiate between what is merely hype and what we ought to be concerned about. This course is intended for anyone interested in the topic, regardless of their current knowledge of chemistry.
Offering: Host
Grading: OPT
Credits: 1.00
Gen Ed Area: None
Prereq: None

CHEM134 Quantum Weirdness?
Chem 134 is a general education course open to first-year students, sophomores, juniors, and seniors. There is an enrollment limit of 19 students. There are no formal prerequisites for this course except for a keen intellect and an interest in modern science. In a lecture and discussion format, we will be exploring the "weirdness" and "paradoxes" inherent in the science of quantum mechanics. Full disclosure: the instructor is a scientific realist and is skeptical of fantasy physics. We will be reading articles from the archives of Scientific American, and from books such as "What is Real?" by Adam Becker, "Beyond Weird," by Philip Ball, and "Through Two Doors at Once: The Elegant Experiment That Captures the Enigma of Our Quantum Reality," by Anil Ananthaswamy. At the end of the course, students will be expected to present 15-minute talks on a topic of their choosing loosely adhering to the theme of the course.
Offering: Host
Grading: Cr/U
Credits: 1.00
Gen Ed Area: NSM-CHEM
Prereq: None

CHEM141 Introductory Chemistry I
CHEM 141 is the first half of an introductory course in general chemistry intended for science majors and for premedical studies. The topics covered
will include measurement and dimensional analysis; atomic theory; chemical nomenclature; mass relationships and the mole concept; stoichiometry; aqueous reactions; gases; thermochemistry; the quantum mechanical model of the atom; periodic trends; bonding theory; and molecular geometry. The full-year course can be completed by continuing on to CHEM 142.

Offering: Host
Grading: A-F
Credits: 1.00
Gen Ed Area: NSM-CHEM
Prereq: CHEM141

CHEM143 Principles of Chemistry I

An introduction to chemistry intended for motivated students with a solid high school chemistry background and some exposure to basic calculus, this course will emphasize the fundamental principles of chemistry and is recommended for students interested in pursuing majors in science or mathematics. The topical focus will be on the concepts of electronic structure, molecular geometry, and equilibrium thermodynamics, with applications to current research on, for example, the carbon cycle and nanomaterials. CHEM143 and CHEM144 provide the best basic foundation for further study of chemistry and is strongly recommended for Chemistry, MB&B, and NS&B majors. Completion of CHEM143 and CHEM144 also satisfies premedical general chemistry requirements.

Offering: Host
Grading: A-F
Credits: 1.00
Gen Ed Area: NSM-CHEM
Prereq: CHEM141

CHEM144 Principles of Chemistry II

This second semester general chemistry course is a continuation of the Principles of Chemistry sequence that is recommended for science students. The focus of the course is the fundamentals of structure and bonding, with an emphasis on predicting reactivity. Major topical coverage includes the reactivity of ions in aqueous solution, kinetics, modern electronic structure, and the chemistry of transition metal complexes, with applications to current research on, for example, food chemistry, functional materials, and artificial photosynthesis.

Offering: Host
Grading: A-F
Credits: 1.00
Gen Ed Area: NSM-CHEM
Prereq: CHEM143

CHEM152 Introductory Chemistry Laboratory

This course provides an introduction to the application of chemical concepts in the laboratory. It is required for Chemistry or MB&B majors and satisfies the general chemistry laboratory requirements for pre-medical studies. Chem 152 is usually taken concurrently with CHEM 141, 142, 143, or 144.

Offering: Host
Grading: A-F

Credits: 0.50
Gen Ed Area: NSM-CHEM
Prereq: None

CHEM241 Informal Science Education for Elementary School Students I

This service-learning course will focus on designing and implementing original, effective, and engaging science-based lesson plans for elementary age children in an afterschool program setting at five local elementary schools. The classroom component includes writing, testing, and critiquing lesson plans and organizing a once-a-semester event, Science Saturday. Members of the class are required to volunteer weekly, co-lead Science Saturday, complete individual work, and organize meetings for projects outside of class.

Offering: Host
Grading: BMS
Credits: 1.00
Gen Ed Area: None
Prereq: None

CHEM242 Informal Science Education for Elementary School Students II

This service-learning course will focus on designing and implementing original, effective, and engaging science-based lesson plans for elementary age children in an afterschool program setting at five local elementary schools. The classroom component includes writing, testing, and critiquing lesson plans and organizing a once-a-semester event, Science Saturday. Members of the class are required to volunteer weekly, co-lead Science Saturday, complete individual work, and organize meetings for projects outside of class. This course is a continuation of CHEM241.

Offering: Host
Grading: Cr/U
Credits: 1.00
Gen Ed Area: NSM-CHEM
Identical With: MB&B242
Prereq: None

CHEM250 Pre-Organic Chemistry: Key Concepts and Fundamental Principles

This course is designed to assist students in the transition from CHEM 142 & CHEM 144 to CHEM 251. This course will review key General Chemistry concepts and apply them to organic molecules. Thematic presentation of material will use visual lecture and demonstration methods, small-group problem solving, peer-group workshops and lecture format. A broad understanding of Organic Chemistry terminology, structures, nomenclature, applications and basic concepts will provide students will a firm foundation for success in CHEM 251.

Offering: Host
Grading: A-F
Credits: 1.00
Gen Ed Area: NSM-CHEM
Prereq: CHEM142 OR CHEM144

CHEM251 Principles of Organic Chemistry I

This course offers an introduction to the chemistry of carbon compounds with emphasis on the relationship between structure and reactivity. The laboratory course CHEM257 is normally elected concurrently but is not required.

Offering: Host
Grading: A-F
Credits: 1.00
Gen Ed Area: NSM-CHEM
Prereq: CHEM142 OR CHEM144

CHEM252 Principles of Organic Chemistry II

This course is a continuation of the chemistry of carbon compounds with emphasis on the chemistry of important functional groups. The laboratory course CHEM258 is normally elected concurrently but is not required.

Offering: Host
Grading: A-F
Credits: 1.00
models of biological phenomena, how these models are validated and refined, and how they are used to form explanations and make testable predictions. Model systems to be considered include the nucleosome, the ribosome, membrane dynamics and ion channels, molecular devices and motors, prototype signal transduction systems, and regulatory processes. This course is suitable for physics and chemistry students who wish to learn about biological applications and for molecular and cellular biology students to develop skills with quantitative physicochemical modes of inquiry applied to the life sciences.

Offering: Host

Grading: A-F

Credits: 1.00

Gen Ed Area: NSM-CHEM

Prereq: (CHEM251 AND CHEM257) OR (CHEM143 AND CHEM144 AND CHEM152)

CHEM314 Environmental Chemistry

This course is designed for students with college-level general and organic chemistry background. Examples of topics to be covered include energy production and consumption, chemical pollution and environmental clean-up, among others. Analysis and criticism of environmental literature are included.

Offering: Host

Grading: A-F

Credits: 1.00

Gen Ed Area: NSM-CHEM

Prereq: (CHEM141 AND CHEM142 AND CHEM251 AND CHEM257) OR (CHEM143 AND CHEM144 AND CHEM251 AND CHEM257)

CHEM317 Analytical Chemistry

This course is an overview of the broad subject of analytical chemistry, with an emphasis on quantitative chemical analysis. This course will focus on classical methods of chemical analysis, rather than instrumental analysis.

The course format will be a hybrid lecture/lab sequence, with lecture time spent investigating the background of each laboratory experiment.

Offering: Host

Grading: A-F

Credits: 1.00

Gen Ed Area: NSM-CHEM

Prereq: (CHEM141 AND CHEM142 AND CHEM251 AND CHEM257) OR (CHEM143 AND CHEM144 AND CHEM251 AND CHEM257)

CHEM320 Scientific Research Ethics

This course involves critical consideration of the ethical issues that arise in the conduct of scientific research. The course will begin with an overview of the ethical issues commonly encountered in research, including what is and is not an ethical issue and how ethical issues are dealt with in principle and in practice. Initial topics include record keeping, conflict of interest, responsible authorship, ownership of projects, policies for handling misconduct, policies regarding the use of human and animal subjects, and data management and distribution. The course proceeds to consider a series of case studies based on instances in the recent scientific literature in which ethical problems were encountered.

Offering: Host

Grading: A-F

Credits: 1.00

Gen Ed Area: NSM-CHEM

Prereq: None

CHEM331 Biomedical Chemistry

This course is designed to explore the molecular basis of disease and treatment options. Topics will reflect the importance of chemistry and biochemistry in the advancement of medicine today and will include treatment of metabolic disorders, rational drug design, and mode of drug action. A large portion of the course will be dedicated to learning computer programs used in computational drug design as part of a final drug design project.

Offering: Host
These diseases and discuss the strategies used to detect, identify and study these pathologies. We will read current literature that studies the molecular nature of amyloidosis, the process by which proteins and peptides misfold to form amyloid fibers, is at the root of several different diseases, including Parkinson’s disease, Alzheimer’s disease, mad cow disease, and type II diabetes to name a few. This course will focus on current research in the field that seeks to understand why a functional, well-folded protein adopts the misfolded amyloid form. In the course of discussing the misfolded nature of these proteins, we will review central elements of protein structure and stability to better understand the protein-folding landscape and the process of misfolding. We will also discuss how the process of misfolding leads to the different diseases and disease pathologies. We will read current literature that studies the molecular nature of these diseases and discuss the strategies used to detect, identify and study these misfolded proteins in the body and in the test-tube.

Offering: Crosslisting
Grading: A-F
Credits: 1.00
Gen Ed Area: NSM-MBB
Identical With: MB&B325, MB&B335, CHEM535
Prereq: MB&B208 OR MB&B325

CHEM337 Physical Chemistry I: Quantum Mechanics and Spectroscopy
A rigorous introduction to quantum mechanics, this course covers wave mechanics, operator methods, matrix mechanics, perturbation theory, angular momentum, molecular vibrations, atomic and molecular structure, symmetry, and spectroscopy.
Offering: Host
Grading: A-F
Credits: 1.00
Gen Ed Area: NSM-CHEM
Prereq: (CHEM141 AND CHEM142 AND MATH121 AND MATH122) OR (CHEM143 AND CHEM144 AND MATH121 AND MATH122)

CHEM338 Physical Chemistry II: Thermodynamics, Statistical Mechanics, and Kinetics
This course investigates chemical aspects of statistical mechanics and the laws of thermodynamics including free energy, chemical potential and chemical equilibria, and rates of chemical reactions.
Offering: Host
Grading: A-F
Credits: 1.00
Gen Ed Area: NSM-CHEM
Prereq: (MATH121 AND MATH122 AND CHEM141 AND CHEM142) OR (MATH121 AND MATH122 AND CHEM143 AND CHEM144)

CHEM342 Molecules to Medicine
This course will explore the process of drug development, including target selection, lead discovery using computer-based methods and combinatorial chemistry/high-throughput screening, organic synthesis, bioavailability, clinical trials, and other factors (some economics and politics) involved in bringing a drug to the marketplace. Critical consideration of the variables to contend with at each step will be described and discussed, including aspects of research ethics and patent law. The basic science of molecular recognition, computer-aided drug design, and the role of factors from synthetic chemistry to toxicology will be presented. Case studies of the development of drugs recently successful in making the journey from molecule to medicine will be discussed, as well as the story of some that did not, and why. Emerging new design strategies such as fusion-protein therapies, crisper technology, and enhanced use of rational design and combinatorial methods will be emphasized, and how pharmaceutical research is evolving in the postgenomic era, particularly with biologics. Job opportunities in the pharmaceutical industry will be discussed.
Offering: Host
Grading: A-F
Credits: 1.00
Gen Ed Area: NSM-CHEM
Identical With: BIOL342, CIS342, MB&B342
Prereq: CHEM252 OR MB&B208

CHEM353 Applications of Spectroscopic Methods in Organic Chemistry
The use of NMR infrared and mass spectroscopy in structure determinations will be discussed.
Offering: Host
CHEM375 Integrated Chemistry Laboratory I
This advanced laboratory course in chemistry involves work from the major subdisciplines: organic, inorganic, biochemistry, physical, and instrumental. Emphasis will be placed on integrating aspects of chemical synthesis, spectroscopic characterization, and determination of physical properties in each exercise.

Offering: Host
Grading: A-F
Credits: 1.00
Gen Ed Area: NSM-CHEM
Prereq: CHEM251 AND CHEM252 AND CHEM257 AND CHEM258

CHEM376 Integrated Chemistry Laboratory II
This advanced laboratory course in chemistry involves work from the major subdisciplines: organic, inorganic, biochemistry, physical, and instrumental. Emphasis will be placed on integrating aspects of chemical synthesis, spectroscopic characterization, and determination of physical properties in each exercise.

Offering: Host
Grading: A-F
Credits: 1.00
Gen Ed Area: NSM-CHEM
Prereq: CHEM375

CHEM376 Chemistry of Materials and Nanomaterials
This course will provide an introduction to materials chemistry, with a special emphasis on nanomaterials. Topics covered will include colloidal metal nanomaterials; semiconductors and quantum dots; carbon nanotubes, fullerenes, and graphene; metal-organic frameworks; self-assembly and metamaterials; electron and scanning probe microscopies; and lithography. The course will also discuss applications of these materials and techniques in areas such as plasmonics and sensing, catalysis, energy generation, and medicine.

Offering: Host
Grading: A-F
Credits: 1.00
Gen Ed Area: NSM-CHEM
Identical With: PHYS377
Prereq: CHEM251

CHEM379 Nanomaterials Lab
This course will be a combination of weekly lecture and laboratory exercises designed to introduce students to new developments in the chemistry of materials and nanomaterials. Concepts and theoretical background will be discussed during weekly lectures. Students will then apply those concepts to the preparation of materials/nanomaterials in weekly lab sections. Students will synthesize quantum dots, build solar cells, pattern surfaces using both photolithography and soft lithography, make conductive carbon nanofiber films, prepare high-temperature superconductors, and learn scanning probe microscopy techniques.

Offering: Host
Grading: A-F
Credits: 1.00
Gen Ed Area: NSM-CHEM
Prereq: CHEM257 AND CHEM258

CHEM381 Physical Chemistry for the Life Sciences
The course is concerned with the basic physicochemical principles and model systems essential to understanding, explaining, and predicting the behavior of biological systems in terms of molecular forces. The course integrates fundamental concepts in thermodynamics, kinetics, and molecular spectroscopy with the structures, functions, and molecular mechanisms of biological processes. The objectives of the course are to (1) familiarize life science students at the advanced undergraduate and beginning graduate level with basic physicochemical laws, theories, and concepts important to the life sciences; (2) provide a working knowledge of mathematical methods useful in life science research; (3) develop a critical perspective on explanation of biological processes and understanding biological systems; and (4) survey the main applications of physical chemistry in the life sciences. Theory, methodology, and biophysical concepts are distributed throughout the course.

Offering: Crosslisting
Grading: A-F
Credits: 1.00
Gen Ed Area: NSM-MBB
Identical With: MB&B381, MB&B581
Prereq: CHEM251 AND MATH117 OR CHEM251 AND MATH120 OR CHEM251 AND MATH121

CHEM382 Practical NMR
This course will cover how a spectrometer works as well as the theory and application of NMR experiments. The topics will include one-dimensional proton and heteronuclear experiments as well as decoupling. The course will begin with how the spectrometer works and how data processing is carried out, as well as how to calibrate the spectrometer and shim the magnet. The one-dimensional TOCSY and NOESY experiments will then be covered. The course will also cover heteronuclear and homonuclear two-dimensional NMR experiments. The experiments will include two-dimensional DQFCOSY, TOCSY, NOESY, and ROESY proton experiments as well as heteronuclear experiments to correlate the chemical shifts of protons and heteronuclei, as well as how to
select heteronuclear resonances on the basis of the number of directly attached protons.

The course will consist of lectures as well as a laboratory component in which the Mercury 300 will be used to obtain data that will be analyzed using the methods developed in the lecture part of the course. This course is specifically aimed at general users of the Mercury spectrometer who wish to learn how to carry out and analyze advanced one-dimensional and two-dimensional NMR experiments.

Offering: Host
Grading: A-F
Credits: 1.00
Gen Ed Area: NSM-CHEM
Identical With: MB&B382
Prereq: None

CHEM383 Biochemistry
This introductory course to the principles and concepts of contemporary biochemistry presents both the biological and chemical perspectives. The major themes will be the structure of proteins and the basis of enzymatic activity, cellular metabolism and the generation and storage of metabolic energy, and general principles of the biosynthesis of cellular components.

Offering: Host
Grading: A-F
Credits: 1.00
Gen Ed Area: NSM-CHEM
Identical With: MB&B383
Prereq: (CHEM251 AND CHEM252)

CHEM386 Biological Thermodynamics
This course is addressed to undergraduate and graduate students interested in biological chemistry and structural biology. The course presents thermodynamic methods currently used to relate structure to function in biological molecules. Topics include binding curves, chemical ligand linkages, binding polynomial, cooperativity, site-specific binding processes, and allosteric effects. Several models for allosteric systems, such as the Monod-Wyman-Changeux model, the induced-fit model, and the Pauling model, are analyzed in detail. Applications of these models are illustrated for functional regulation of respiratory proteins and for protein-nucleic-acid complexes involved in control of gene expression.

Offering: Host
Grading: OPT
Credits: 1.00
Gen Ed Area: NSM-CHEM
Identical With: MATH121 AND MATH122
Prereq: MATH121 AND MATH122

CHEM387 Enzyme Mechanisms
The chemical mechanisms involved in the action of a series of typical enzymes will be considered.

Offering: Host
Grading: A-F
Credits: 0.50
Gen Ed Area: NSM-CHEM
Identical With: MB&B387
Prereq: CHEM383 or MB&B383

CHEM390 Practical Methods in Biochemistry
This course centers on currently used techniques for protein separation, characterization, and purification, such as ultracentrifugation, gel electrophoresis, and chromatography. These topics will be introduced within the general context of the behavior of macromolecules in solution. The relative stability of proteins in different media, the forces stabilizing protein structure, and the interaction of proteins will be discussed. We will explicitly consider different techniques used to study proteins. Relatively novel techniques to be discussed include surface plasmon resonance, microarray methods and mass spectrometry, and single molecule microscopy. In the course, we will go through three or four different protein purification protocols and discuss the methods used in each one. We will also touch upon the commonly used spectroscopic techniques used to characterize proteins, including absorption, fluorescence, and circular dichroism. The course will focus on biochemical techniques and understanding the physical principles underlying these techniques and will also discuss tactics for optimizing established isolation and purification procedures and for isolating and characterizing an unknown protein.

The course content is appropriate for advanced undergraduates (juniors/seniors) and beginning graduate students from chemistry, biology, molecular biophysics or MB&B.

Offering: Crosslisting
Grading: A-F
Credits: 1.00
Gen Ed Area: NSM-MBB
Identical With: MB&B340
Prereq: [MB&B208] OR [CHEM383 or MB&B383]

CHEM395 Structural Biology Laboratory
One of the major catalysts of the revolution in biology that is now under way is our current ability to determine the physical properties and three-dimensional structures of biological molecules by x-ray diffraction, nuclear magnetic resonance (NMR) spectroscopy, and other spectroscopic methods. This course is designed to familiarize students with current research techniques in biochemistry and molecular biophysics. Students will perform spectroscopic investigations on a protein that they have isolated and characterized using typical biochemical techniques, such as electrophoresis, enzyme extraction, and column chromatography. The course will provide hands-on experience with spectroscopic methods such as NMR, fluorescence, UV-Vis absorption, and Raman as well as bioinformatic computational methods. All of these methods will be applied to the study of biomolecular structure and energetics. This course provides a broad knowledge of laboratory techniques valuable for independent research at the undergraduate level and beyond.

Offering: Crosslisting
Grading: A-F
Credits: 1.00
Gen Ed Area: NSM-MBB
Identical With: MB&B395, PHYS395
Prereq: [MB&B208 or BIOL208] AND CHEM141 AND CHEM142 OR ([MB&B208 or BIOL208] AND CHEM143 AND CHEM144)

CHEM396 Molecular Modeling and Design
This course will introduce students to the practical and theoretical aspects of computationally modeling and designing biological macromolecules, with a particular emphasis on protein structures. Students will run molecular dynamics simulations with Gromacs (http://www.gromacs.org) and do protein structure predication/design with Rosetta (https://www.rosettacommons.org). Over the course of the semester students will embark on a group research project, likely related to redesigning proteins that show potential for use as drugs. Both Gromacs and Rosetta use the Mac/Linux command-line, so having some familiarity with that prior to the course would be helpful but not required.

Offering: Host
Grading: A-F
Credits: 1.00
Gen Ed Area: NSM-CHEM
Identical With: CHEM596
Prereq: MB&B208 OR BIOL265 OR CHEM381 OR CHEM325 OR MB&B335 OR CHEM338 OR CHEM383 OR PHYS316 OR PHYS340 OR BIOL266

CHEM401 Individual Tutorial, Undergraduate
Topic to be arranged in consultation with the tutor.

Offering: Host
Grading: OPT
CHEM402 Individual Tutorial, Undergraduate
Topic to be arranged in consultation with the tutor.
Offering: Host
Grading: OPT

CHEM407 Senior Tutorial (downgraded thesis)
Downgraded Senior Thesis Tutorial - Project to be arranged in consultation with the tutor. Only enrolled in through the Honors Coordinator.
Offering: Host
Grading: A-F

CHEM408 Senior Tutorial (downgraded thesis)
Downgraded Senior Thesis Tutorial - Project to be arranged in consultation with the tutor. Only enrolled in through the Honors Coordinator.
Offering: Host
Grading: A-F

CHEM409 Senior Thesis Tutorial
Topic to be arranged in consultation with the tutor.
Offering: Host
Grading: OPT

CHEM410 Senior Thesis Tutorial
Topic to be arranged in consultation with the tutor.
Offering: Host
Grading: OPT

CHEM411 Group Tutorial, Undergraduate
Topic to be arranged in consultation with the tutor.
Offering: Host
Grading: OPT

CHEM412 Group Tutorial, Undergraduate
Topic to be arranged in consultation with the tutor.
Offering: Host
Grading: OPT

CHEM419 Student Forum
Student-run group tutorial, sponsored by a faculty member and approved by the chair of a department or program.
Offering: Host
Grading: Cr/U

CHEM420 Student Forum
Student-run group tutorial, sponsored by a faculty member and approved by the chair of a department or program.
Offering: Host
Grading: Cr/U

CHEM421 Undergraduate Research, Science
Individual research projects for undergraduate students supervised by faculty members.
Offering: Host
Grading: OPT

CHEM422 Undergraduate Research, Science
Individual research projects for undergraduate students supervised by faculty members.
Offering: Host
Grading: OPT

CHEM423 Advanced Research Seminar, Undergraduate
Advanced research tutorial; project to be arranged in consultation with the tutor.
Offering: Host
Grading: OPT

CHEM424 Advanced Research Seminar, Undergraduate
Advanced research tutorial; project to be arranged in consultation with the tutor.
Offering: Host
Grading: OPT

CHEM491 Teaching Apprentice Tutorial
The teaching apprentice program offers undergraduate students the opportunity to assist in teaching a faculty member's course for academic credit.
Offering: Host
Grading: OPT

CHEM492 Teaching Apprentice Tutorial
The teaching apprentice program offers undergraduate students the opportunity to assist in teaching a faculty member's course for academic credit.
Offering: Host
Grading: OPT

CHEM495 Research Apprentice, Undergraduate
Project to be arranged in consultation with the tutor.
Offering: Host
Grading: Cr/U

CHEM496 Research Apprentice, Undergraduate
Project to be arranged in consultation with the tutor.
Offering: Host
Grading: Cr/U

CHEM500 Graduate Pedagogy
The elements of good teaching will be discussed and demonstrated through lectures, practice teaching sessions, and discussions of problems encountered in the actual teaching environment. The staff consists of faculty and experienced graduate students. An integral part of the course is a required one-day workshop BEFORE the first day of formal classes.
Training in pedagogy in the first semester of attendance is required for all incoming Wesleyan MA and PhD students who have not already fulfilled this requirement at Wesleyan. BA/MA students are not required to get training in pedagogy but may choose to do so.
Offering: Crosslisting
Grading: Cr/U
Credits: 0.50
Gen Ed Area: None
Identical With: E&ESS500, BIOL500, ASTRS500, MB&B500, MUSC500, PHYS500, PSYC500, MATH500
Prereq: None

CHEM501 Individual Tutorial for Graduates
Topic to be arranged in consultation with the tutor.
Offering: Host
Grading: OPT

CHEM502 Individual Tutorial for Graduates
Topic to be arranged in consultation with the tutor.
Offering: Host
Grading: OPT

CHEM504 Selected Topics, Graduate Science
Topic to be arranged in consultation with the tutor. A seminar primarily concerned with papers taken from current research publications designed for, and required of, graduate students.
Offering: Host
Grading: OPT

CHEM507 Molecular Biophysics Journal Club I
This course includes presentation and active discussion of a series of current research articles in the field of molecular biophysics and biophysical chemistry from journals including but not limited to the Biophysical Journal, Biopolymers, Current Opinion in Structural Biology, Journal of Biomolecular Structure and Dynamics, and the Annual Review of Molecular Biophysics and Biomolecular Structure.
Offering: Crosslisting
complexes, tRNA-binding proteins, and the ribosome.

The histone fold, helicases, site-specific recombinases, nuclear RNA-protein interactions to be discussed include site-specific DNA endonucleases, topoisomerases, and only elementary aspects of linear algebra, calculus, differential equations, and statistics. This course deals with how these constructs are integrated in the framework of Boltzmann statistical mechanics to formulate mathematical and computational models. Biological systems are inherently complex, and some form of modeling is always involved in developing an explanation of how they work. However, these models typically involve only a few basic constructs (simple harmonic motion, ideal fluids, two-state Ising models, random walks, electrostatic interactions, classical dynamics, rate equations, QM energy levels, distribution functions, and network analysis) and only elementary aspects of linear algebra, calculus, differential equations, and statistics. This course deals with how these constructs are integrated in the framework of Boltzmann statistical mechanics to formulate mathematical models of biological phenomena, how these models are validated and refined, and how they are used to form explanations and make testable predictions.

Model systems to be considered include the nucleosome, the ribosome, membrane dynamics and ion channels, molecular devices and motors, prototype signal transduction systems, and regulatory processes. This course is suitable for physics and chemistry students who wish to learn about biological applications and for molecular and cellular biology students to develop skills with quantitative physicochemical modes of inquiry applied to the life sciences.

This course focuses on recent advances in the understanding of the structural basis of the recognition of nucleic acids by proteins. Macromolecular systems to be discussed include site-specific DNA endonucleases, topoisomerases, the histone fold, helicases, site-specific recombinases, nuclear RNA-protein complexes, tRNA-binding proteins, and the ribosome.
body perturbation theory; and coupled-cluster theory. This course is suitable for advanced graduate students in physical chemistry and chemical physics.

Offering: Host
Grading: A-F
Credits: 1.00
Gen Ed Area: None
Prereq: CHEM340 OR [PHYS315 or PHYS515]

CHEM541 Physical Chemistry IV: Quantum Chemistry
Second half of the semester, computer lab.

Offering: Host
Grading: A-F
Credits: 0.50
Gen Ed Area: None
Prereq: CHEM337 OR PHYS214

CHEM545 Modern High-Resolution Spectroscopy
This is a graduate-level lecture/discussion course in selected topics in modern high-resolution spectroscopy. Topics to be covered include microwave spectroscopy, angular momentum theory, electronic spectroscopy of diatomic molecules, and vibrational normal mode analysis. While there are no formal prerequisites for this course, a working knowledge of quantum mechanics will be assumed.

Offering: Host
Grading: A-F
Credits: 1.00
Gen Ed Area: None
Prereq: CHEM340 OR PHYS335

CHEM547 Seminar in Chemical Physics
Weekly seminars presented jointly with the Department of Physics under the auspices of the Chemical Physics Program. These informal seminars will be presented by students, faculty, and outside visitors on current research and other topics of interest.

Offering: Host
Grading: Cr/U
Credits: 0.25
Gen Ed Area: None
Identical With: PHYS587
Prereq: None

CHEM548 Seminar in Chemical Physics
Weekly seminars presented jointly with the Chemistry Department under the auspices of the Chemical Physics Program. These informal seminars will be presented by students, faculty, and outside visitors on current research and other topics of interest.

Offering: Crosslisting
Grading: Cr/U
Credits: 0.25
Gen Ed Area: None
Identical With: PHYS588
Prereq: None

CHEM549 Advanced Research Seminar, Graduate
Advanced research tutorial; project to be arranged in consultation with the tutor.

Offering: Host
Grading: OPT

CHEM550 Advanced Research Seminar, Graduate
Advanced research tutorial; project to be arranged in consultation with the tutor.

Offering: Host
Grading: OPT

CHEM557 Seminar in Organic and Inorganic Chemistry
This graduate-level seminar in organic and inorganic chemistry will include weekly presentations and discussions based on current research. Speakers will present the details of their topic using specific examples and will place the research in a broader context with respect to the current literature while also providing adequate background information and drawing concepts together with critical concluding analysis.

Offering: Host
Grading: Cr/U
Credits: 0.25
Gen Ed Area: None
Prereq: None

CHEM558 Seminar in Organic and Inorganic Chemistry
This graduate-level seminar in organic and inorganic chemistry will include weekly presentations and discussions based on current research. Speakers will present the details of their topic using specific examples and will place the research in a broader context with respect to the current literature while also providing adequate background information and drawing concepts together with critical concluding analysis.

Offering: Host
Grading: Cr/U
Credits: 0.25
Gen Ed Area: None
Prereq: None

CHEM561 Graduate Field Research
Research in the field, normally on thesis project.

Offering: Host
Grading: OPT

CHEM565 Physical Methods in Chemistry
An introduction to the use of physical methods to characterize the structures and dynamics of chemical systems with a particular emphasis on applications in inorganic chemistry. Topics will include a variety of spectroscopies (e.g., optical absorption, circular dichroic techniques, infrared and Raman spectroscopies, NMR techniques), small molecule X-ray crystallography, and magnetic susceptibility measurements. Group theoretical techniques will be used extensively to develop selection rules.

Offering: Host
Grading: A-F
Credits: 1.00
Gen Ed Area: NSM-CHEM
Prereq: CHEM361 OR CHEM337

CHEM587 Seminar in Biological Chemistry
This course involves weekly presentations and discussions based on current research.

Offering: Host
Grading: Cr/U
Credits: 0.25
Gen Ed Area: None
Identical With: MB&B587
Prereq: (CHEM383 or MB&B383 or CHEM325 or MB&B325 or MB&B208) OR [CHEM383 or MB&B383]

CHEM588 Seminar in Biological Chemistry
This course involves weekly presentations and discussions based on current research.

Offering: Host
Grading: Cr/U
Credits: 0.25
Gen Ed Area: None
Identical With: MB&B588
Prereq: (CHEM383 or MB&B383 or CHEM325 or MB&B325 or MB&B208) OR [CHEM383 or MB&B383]
CHEM596 Molecular Modeling and Design

This course will introduce students to the practical and theoretical aspects of computationally modeling and designing biological macromolecules, with a particular emphasis on protein structures. Students will run molecular dynamics simulations with Gromacs (http://www.gromacs.org) and do protein structure prediction/design with Rosetta (https://www.rosettacommmons.org). Over the course of the semester students will embark on a group research project, likely related to redesigning proteins that show potential for use as drugs. Both Gromacs and Rosetta use the Mac/Linux command-line, so having some familiarity with that prior to the course would be helpful but not required.

Offering: Crosslisting
Grading: A-F
Credits: 1.00
Gen Ed Area: NSM-CHEM
Identical With: CHEM396
Prereq: MB&B208 OR BIOL265 OR CHEM381 OR CHEM325 OR MB&B335 OR CHEM338 OR CHEM383 OR PHYS316 OR PHYS340 OR BIOL266