GRADUATE BIOLOGY PROGRAM

The Biology Department offers graduate work leading to the degree of doctor of philosophy. The primary emphasis is on an intensive research experience culminating in a thesis, though the student will also be expected to acquire a broad knowledge of related biological fields through an individual program of courses, seminars, and readings. The low student-faculty ratio in the department ensures close contact between students and their dissertation advisors. Faculty and invited outside speakers offer regular research seminars, and graduate students present their work as it progresses at a biweekly departmental colloquium. Additional courses and interests of lecture by other departments are also available to biology students. All graduate students have the opportunity for some undergraduate teaching with faculty training and supervision. Teaching assistants are involved primarily in preparing materials for, and assisting in, laboratory courses and in evaluating student work. In the later years of the PhD program, some classroom teaching opportunities may be offered. Students are encouraged to spend a summer at the Marine Biological Lab in Woods Hole, Cold Spring Harbor Lab, or another institution offering specialized graduate courses. Funds are available to support such coursework and to facilitate student travel to scientific conferences.

COURSES

The PhD is a research degree demanding rigorous scholarly training and creativity; the result is an original contribution to the candidate’s field. The student and a faculty committee will work out a program of study for the first two years at the time of matriculation. This program will take into account the student’s proposed field of interest and prior background in biology and related sciences. No specific courses are required, but, rather, a subject-matter requirement is used to ensure a broad background. Before taking the qualifying examination, all students must have at least one substantive course above the introductory level (at Wesleyan or elsewhere) in each of five subject areas: genetics/genomics/bioinformatics; evolution/ecology; physiology/neurobiology; behavior; cell biology/developmental biology; and biochemistry/molecular biology. The adequacy of courses that have been taken at other institutions will be evaluated by the faculty committee through its meeting with the student. Students whose focus is bioinformatics may substitute two upper-level courses in computer science for one of these five areas. All graduate students must take a minimum of two advanced-level (300 or 500) courses within the Biology Department. At least one of these should be taken during the student’s first year. Departmental and interdepartmental seminars and journal clubs are included in the program, and additional individual reading in particular areas may also be required. First-year students are exposed to research in the department through usually two, occasionally three, one-semester lab rotations or research practica. Toward the end of each semester of the first year, each student will meet with an evaluation committee of the faculty to review progress and to discuss any modification of the proposed program.

Working with the First-Year Advisory Committee, graduate students design their own program of courses to complement and strengthen their previous background knowledge. Each student participates in one of the journal clubs, during which recent journal articles are presented and discussed. Three journal clubs meet weekly over lunch:

- Ecology/Evolution
- Cell/Development/Genetics
- Neuroscience/Behavior

PROGRESS AND QUALIFYING EXAMS

A qualifying examination will be taken before the end of the second year. The examination is designed to test the student’s knowledge of biology and ability to think critically. It includes a written research proposal, followed by an oral examination to discuss the proposal and evaluate the student’s breadth in biology. The examination will be administered by four faculty members of the department (or associated departments), chosen by the student and his or her research advisor. The examining committee will include the research advisor and one member whose research field is clearly outside the student’s area of special interest.

TEACHING

A minimum of three semesters as a teaching assistant is required.

RESEARCH

Graduate students start their research experience with two or more semester-long practica in laboratories. These are designed to provide complementing experiences to prepare students for their thesis research. Research projects are available in the following areas:

- Aaron Lab—epilepsy, the hippocampus, and the cortex
- Bodnick Lab—neuroethology
- Burke Lab—development and evolution
- Chernoff Lab—conservation, evolution, and genetics of fish
- Cohan Lab—evolutionary genetics and speciation of bacteria
- Coolon Lab—ecological and evolutionary functional genomics
- Devoto Lab—muscle development in zebrafish
- Grabel Lab—embryonic stem cell neurogenesis
- Johnson Lab—regulation of cell movement during development
- Kirn Lab—developmental neurobiology of vocal learning in songbirds
- Naegele Lab—development of GABAergic interneurons and neural stem cell therapy
- Singer Lab—evolution and ecology of plant-animal interactions
- Sultan Lab—evolutionary ecology of phenotypic plasticity in plants
- Weir Lab—molecular genetics; bioinformatics

All graduate students present their research in biweekly seminars attended by all members of the department, to encourage students to become fluent and comfortable with their presentation skills.

THESIS / DISSERTATION / DEFENSE

The most important requirement is a PhD thesis, an original contribution to biology that merits publication. The candidate will receive advice and guidance from the thesis director but must demonstrate both originality and scientific competence. Normally, the candidate will choose a thesis topic during the second year of graduate work in consultation with appropriate faculty. A thesis committee of three members, chosen by the student and thesis advisor, will
meet with the student and advisor at least twice a year to review progress. This committee determines when sufficient experimental work has been completed and must approve the final written document.

ADDITIONAL INFORMATION

For additional information, please visit wesleyan.edu/bio/graduate (https://wesleyan.edu/bio/graduate).