ASTRONOMY

The Wesleyan Astronomy Department provides outstanding opportunities for undergraduates who wish to major in this fascinating subject, either in preparation for graduate school or as an end in itself. Our unique program blends coursework with research opportunity and provides students access to professional-quality telescopes, instrumentation, and computers. A principal strength is our active research faculty who will work one-on-one with undergraduates employing state-of-the-art instrumentation and computers to investigate areas of current astronomical interest.

Our students go on to graduate programs, including the best in the country, or to a variety of rewarding careers in and out of science. Many of our students are co-authors on research papers based on work performed during their undergraduate careers. In addition, we offer a comprehensive range of coursework that will prepare students for a variety of directions in life, including graduate study.

FACULTY

William Herbst
BA, Princeton University; MAA, Wesleyan University; MSC, University of Toronto; PHD, University of Toronto
John Monroe Van Vleck Professor of Astronomy; Professor of Astronomy; Professor, Integrative Sciences

Edward C. Moran
BS, Pennsylvania State University; MA, Columbia University; MPHIL, Columbia University; PHD, Columbia University
Professor of Astronomy; Director, Van Vleck Observatory; Professor, Integrative Sciences; Co-Coordinator, Planetary Science

Meredith Hughes
BS, Yale University; PHD, Harvard University
Assistant Professor of Astronomy; Assistant Professor, Integrative Sciences

Roy E. Kilgard
BA, Valdosta St University; PHD, University of Leicester
Associate Professor of the Practice in Astronomy

Seth Redfield
BM, New Eng Consv Music; BS, Tufts University; MS, University of Colorado Boulder; PHD, University of Colorado Boulder
Associate Professor of Astronomy; Chair, Astronomy Department; Associate Professor, Integrative Sciences; Co-Coordinator, Planetary Science

UNDERGRADUATE PROGRAM

DEPARTMENTAL ADVISING EXPERTS

William Herbst, Edward Moran, Seth Redfield

- Undergraduate Astronomy Major (catalog.wesleyan.edu/departments/astr/ugrd-astr)
- Graduate Astronomy Program (catalog.wesleyan.edu/departments/astr/grad-astr)

ASTR103 The Planets
More than 100 planets are now known in the universe, eight of which circle the sun. NASA missions and improved telescopes and techniques have greatly increased our knowledge of them and our understanding of their structure and evolution. In this course, we study those eight planets, beginning with the pivotal role that they played in the Copernican revolution, during which the true nature of the earth as a planet was first recognized. We will study the geology of the earth in some detail and apply this knowledge to our closest planetary neighbors—the moon, Venus, and Mars. This is followed by a discussion of the giant planets and their moons and rings. We will finish the discussion of the solar system with an examination of planetary building blocks—the meteorites, comets, and asteroids. Additional topics covered in the course include spacecraft exploration, extrasolar planetary systems, the formation of planets, life in the universe, and the search for extraterrestrial intelligence.

Offering: Crosslisting
Grading: A-F
Credits: 1.25
Gen Ed Area: NSM-ASTR
Identical With: E&ES151
Prereq: None

ASTR105 Exploring the Cosmos
This introductory course for non-science majors unveils the universe and how we have come to understand our place in it. We will touch on a full range of astronomical topics, including the mechanics of our solar system, the discovery of planets around other stars, the stellar life cycle, the formation and evolution of galaxies, the big bang, and the ultimate fate of the universe. Occasional evening sessions will provide the opportunity to observe celestial objects through Wesleyan’s telescopes.

Offering: Host
Grading: A-F
Credits: 1.00
Gen Ed Area: NSM-ASTR
Prereq: None

ASTR107 The Universe
This introductory course for non-science majors unveils the universe and how we have come to understand our place in it. We will touch on a full range of astronomical topics, including the mechanics of our solar system, the discovery of planets around other stars, the stellar life cycle, the formation and evolution of galaxies, the big bang, and the ultimate fate of the universe. Occasional evening sessions will provide the opportunity to observe celestial objects through Wesleyan’s telescopes.

Offering: Host
Grading: A-F
Credits: 1.00
Gen Ed Area: NSM-ASTR
Prereq: None

ASTR108 Conceptual Astronomy: Science Fact vs. Science Fiction
Our conceptual understanding of the world around us is shaped by our experiences, often in subtle ways. In this media-dominated world, the public’s predominant exposure to science comes from science fiction in popular culture, especially TV and movies. In this course, we will examine the ways in which popular culture has influenced our collective knowledge about astronomy: the good, the bad, and the really bad. Wide-ranging topics will include asteroids and comets threatening the earth, travel through space and time, and life in the universe. Through lecture, discussion, and laboratory exercises, we will examine these topics through the lens of science to expose the reality of the universe that is our home.

Offering: Host
Grading: A-F
Credits: 1.00
Gen Ed Area: NSM-ASTR

(catalog.wesleyan.edu/departments/astr/ugrd-astr)
(catalog.wesleyan.edu/departments/astr/grad-astr)
will gain hands-on experience with the analysis of data obtained from both processing, and data analysis methods will be discussed. In particular, students and spectroscopy in a wide variety of applications. Data acquisition, image formation, and evolution.

This course reviews the practices of modern observational astronomy. Students will acquire a basic knowledge of the sky and become familiar with the use of Van Vleck Observatory’s telescopes and instruments. Acquisition and analysis of astronomical data via modern techniques are stressed. Topics include celestial coordinates, time, telescopes and optics, astronomical imaging, and photometry. Some basic computer and statistical analysis skills are developed as well. The concepts discussed in lecture are illustrated through observing projects and computer exercises.

This course introduces the techniques of observational astronomy. Students will acquire a basic knowledge of the sky and become familiar with the use of Van Vleck Observatory’s telescopes and instruments. Acquisition and analysis of astronomical data via modern techniques are stressed. Topics include celestial coordinates, time, telescopes and optics, astronomical imaging, and photometry. Some basic computer and statistical analysis skills are developed as well. The concepts discussed in lecture are illustrated through observing projects and computer exercises.

The fundamentals of astronomy will be covered. This course serves as an introduction to the subject for potential majors and as a survey for nonmajors who have a good high school preparation in math and science. We will cover selected topics within the solar system, galaxy, local universe, and cosmology, including the big bang theory of the origin of the universe and the discovery of planets around other stars.

This course will introduce students to the origins, theory, and practice of radio astronomy. It will cover theory of antennas and interferometers, as well as signal detection and measurement techniques. Particular emphasis will be placed on techniques employed in the optical and x-ray bands. Topics will include a description of the use of digital detectors for imaging, photometry, and spectroscopy in a wide variety of applications. Data acquisition, image processing, and data analysis methods will be discussed. In particular, students will gain hands-on experience with the analysis of data obtained from both ground- and satellite-based observatories. An introduction to the relevant error analysis methods is included. Students will also become familiar with the fundamental techniques that will be necessary when “big data” projects like LSST come on line in the near future: database querying, metadata handling, and modern programming techniques.

Our ability to place the earth into a cosmic context dramatically improved in the past decades with the discovery of planets around other stars (exoplanets). The study of exoplanets has quickly become a dominant field in astronomy. This course will focus on the fundamentals of exoplanet formation, detection, and characterization (interiors and atmospheres) based on astronomical observables. We will also discuss the assessment of habitability for Earth-like exoplanets and the prospects for the detection of biosignatures.

As the principal source of light in galaxies today and as drivers of chemical evolution, stars play a critical role in the universe. It is important to understand their structure and evolution. Fortunately, we have a fairly well-developed and tested theory of stellar structure covering both their interiors and atmospheres. In this course, we will provide an introduction to that theory and examine its key results, including a basic description of how stars evolve.

The study of exoplanets has quickly become a dominant field in astronomy. This course will focus on the fundamentals of exoplanet formation, detection, and characterization (interiors and atmospheres) based on astronomical observables. We will also discuss the assessment of habitability for Earth-like exoplanets and the prospects for the detection of biosignatures.

This course introduces modern extragalactic astronomy, blending established practices in the field and important recent discoveries. Three major themes will be developed. First, the basics of Newtonian and relativistic cosmologies will be discussed, including modern determinations of the Hubble Law and the observations that have led to the currently favored cosmological model. Next, the universe of galaxies will be investigated: their constituents, structure and kinematics, and multiwavelength properties. Finally, the nature of galactic nuclei will be explored, including the observational consequences of black-hole accretion and the coordinated growth of galaxies and their central black holes. Outstanding research questions related to the topics covered will be highlighted throughout the course.

This course reviews the practices of modern observational astronomy, focusing primarily on techniques employed in the optical and x-ray bands. Topics will include a description of the use of digital detectors for imaging, photometry, and spectroscopy in a wide variety of applications. Data acquisition, image processing, and data analysis methods will be discussed. In particular, students will gain hands-on experience with the analysis of data obtained from both
on the theory and applications of Fourier transforms. A practical laboratory component will provide experience working with single-dish and interferometric data.

Offering: Host
Grading: A-F
Credits: 0.50
Gen Ed Area: NSM-ASTR
Identical With: ASTR540
Prereq: ASTR155

ASTR401 Individual Tutorial, Undergraduate

Topic to be arranged in consultation with the tutor.

Offering: Host
Grading: OPT

ASTR402 Individual Tutorial, Undergraduate

Topic to be arranged in consultation with the tutor.

Offering: Host
Grading: OPT

ASTR407 Senior Tutorial (downgraded thesis)

Downgraded Senior Thesis Tutorial - Project to be arranged in consultation with the tutor. Only enrolled in through the Honors Coordinator.

Offering: Host
Grading: A-F

ASTR408 Senior Tutorial (downgraded thesis)

Downgraded Senior Thesis Tutorial - Project to be arranged in consultation with the tutor. Only enrolled in through the Honors Coordinator.

Offering: Host
Grading: A-F

ASTR409 Senior Thesis Tutorial

Topic to be arranged in consultation with tutor.

Offering: Host
Grading: OPT

ASTR410 Senior Thesis Tutorial

Topic to be arranged in consultation with the tutor.

Offering: Host
Grading: OPT

ASTR411 Group Tutorial, Undergraduate

Topic to be arranged in consultation with the tutor.

Offering: Host
Grading: OPT

ASTR412 Group Tutorial, Undergraduate

Topic to be arranged in consultation with the tutor.

Offering: Host
Grading: OPT

ASTR421 Undergraduate Research, Science

Individual research projects for undergraduate students supervised by faculty members.

Offering: Host
Grading: OPT

ASTR422 Undergraduate Research, Science

Individual research projects for undergraduate students supervised by faculty members.

Offering: Host
Grading: OPT

ASTR423 Advanced Research Seminar, Undergraduate

Advanced research tutorial; project to be arranged in consultation with the tutor.

Offering: Host
Grading: OPT

ASTR424 Advanced Research Seminar, Undergraduate

Advanced research tutorial; project to be arranged in consultation with the tutor.

Offering: Host
Grading: OPT

ASTR430 Seminar on Astronomical Pedagogy

Methods for effectively teaching astronomy at all levels from general public outreach to college level will be discussed.

Offering: Host
Grading: Cr/U
Credits: 0.25
Gen Ed Area: NSM-ASTR
Prereq: ASTR155 OR ASTR211

ASTR431 Research Discussion in Astronomy

Current research topics in astronomy will be presented and discussed by astronomy staff and students.

Offering: Host
Grading: Cr/U
Credits: 0.25
Gen Ed Area: NSM-ASTR
Prereq: ASTR155 OR ASTR211

ASTR491 Teaching Apprentice Tutorial

The teaching apprentice program offers undergraduate students the opportunity to assist in teaching a faculty member's course for academic credit.

Offering: Host
Grading: OPT

ASTR492 Teaching Apprentice Tutorial

The teaching apprentice program offers undergraduate students the opportunity to assist in teaching a faculty member's course for academic credit.

Offering: Host
Grading: OPT

ASTR500 Graduate Pedagogy

The elements of good teaching will be discussed and demonstrated through lectures, practice teaching sessions, and discussions of problems encountered in the actual teaching environment. The staff consists of faculty and experienced graduate students. An integral part of the course is a required one-day workshop before the first day of formal classes.

Training in pedagogy in the first semester of attendance is required for all incoming Wesleyan MA and PhD students who have not already fulfilled this requirement at Wesleyan. BA/MA students are not required to get training in pedagogy but may choose to do so.

Offering: Crosslisting
Grading: Cr/U
Credits: 0.50
Gen Ed Area: None
Identical With: MUSC500, PHY500, PSYC500, E&ES500, CHEM500, BIOL500, MB&B500, MATH500
Prereq: None

ASTR501 Individual Tutorial for Graduates

Topic to be arranged in consultation with the tutor.

Offering: Host
Grading: OPT

ASTR502 Individual Tutorial for Graduates

Topic to be arranged in consultation with the tutor.

Offering: Host
Grading: OPT
ASTR221 Galactic Astronomy
The fundamentals of astrophysics are applied to the galaxy and objects therein. Topics include the interstellar medium, stellar populations, galactic structure, formation, and evolution.
Offering: Crosslisting
Grading: A-F
Credits: 1.00
Gen Ed Area: NSM-ASTR
Identical With: ASTR221
Prereq: (ASTR155 AND ASTR211)

ASTR224 Exoplanets: Formation, Detection, and Characterization
Our ability to place the earth into a cosmic context dramatically improved in the past decades with the discovery of planets around other stars (exoplanets). The study of exoplanets has quickly become a dominant field in astronomy. This course will focus on the fundamentals of exoplanet formation, detection, and characterization (interiors and atmospheres) based on astronomical observables. We will also discuss the assessment of habitability for Earth-like exoplanets and the prospects for the detection of biosignatures.
Offering: Crosslisting
Grading: OPT
Credits: 1.00
Gen Ed Area: NSM-ASTR
Identical With: ASTR224
Prereq: (ASTR155 AND ASTR211)

ASTR31 Stellar Structure and Evolution
As the principal source of light in galaxies today and as drivers of chemical evolution, stars play a critical role in the universe. It is important to understand their structure and evolution. Fortunately, we have a fairly well-developed and -tested theory of stellar structure covering both their interiors and atmospheres. In this course, we will provide an introduction to that theory and examine its key results, including a basic description of how stars evolve.
Offering: Crosslisting
Grading: A-F
Credits: 1.00
Gen Ed Area: NSM-ASTR
Identical With: ASTR231
Prereq: (PHYS213 AND PHYS214 AND ASTR155 AND ASTR211)

ASTR521 Galactic Astronomy
This course introduces modern extragalactic astronomy, blending established practices in the field and important recent discoveries. Three major themes will be developed. First, the basics of Newtonian and relativistic cosmologies will be discussed, including modern determinations of the Hubble Law and the observations that have led to the currently favored cosmological model. Next, the universe of galaxies will be investigated: their constituents, structure and kinematics, and multiwavelength properties. Finally, the nature of galactic nuclei will be explored, including the observational consequences of black-hole accretion and the coordinated growth of galaxies and their central black holes. Outstanding research questions related to the topics covered will be highlighted throughout the course.
Offering: Crosslisting
Grading: A-F
Credits: 1.00
Gen Ed Area: NSM-ASTR
Identical With: ASTR232
Prereq: (ASTR155 AND ASTR211)

ASTR540 Radio Astronomy
This course will introduce students to the origins, theory, and practice of radio astronomy. It will cover theory of antennas and interferometers, as well as signal detection and measurement techniques. Particular emphasis will be placed on the theory and applications of Fourier transforms. A practical laboratory component will provide experience working with single-dish and interferometric data.
Offering: Crosslisting
Grading: A-F
Credits: 0.50
Gen Ed Area: NSM-ASTR
Identical With: ASTR240
Prereq: ASTR155

ASTR549 Advanced Research Seminar, Graduate
Advanced research tutorial; project to be arranged in consultation with the tutor.
Offering: Host
Grading: OPT

ASTR550 Advanced Research Seminar, Graduate
Advanced research tutorial; project to be arranged in consultation with the tutor.
Offering: Host
Grading: OPT

ASTR555 Planetary Science Seminar
This course will examine topics and methods in the interdisciplinary field of planetary science. Students will join several faculty members in the planetary science group to discuss the origin, evolution, and habitability of planets in this and other solar systems. This class is intended for graduate students who are pursuing or mean to pursue the planetary science concentration. Other graduate and undergraduate students may request admission to the course.
Offering: Crosslisting
Grading: Cr/U
Credits: 0.25
Gen Ed Area: NSM-EES
Identical With: E&ES555
Prereq: None