MOLECULAR BIOLOGY AND BIOCHEMISTRY (MB&B)

MB&B103 Copernicus, Darwin, and the Human Genome Project
Much of art and philosophy is inspired by the question: What does it mean to be human? The project of science has provided rational explanations of human identity that threaten our self-perception as special beings—beginning with the Copernican revolution and discoveries about our unspecial place in the universe. In this course, we will discuss three paradigms arising from modern molecular biology that provide perspective on the lines between living and non-living, human and non-human life, and human and machine by exploring the science of DNA, evolution, and the Human Genome Project, respectively. As part of both discussions, we will consider how society negotiates with science, as depicted in politics and popular art, ethical issues pertaining to the advancement of scientific (e.g., reproductive, genetic) technologies, and plausible resolutions to the tension between science and society that arise from a detailed understanding of the scientific method. Little or no background knowledge in science/biology will be assumed.
Offering: Host
Grading: A-F
Credits: 1.00
Gen Ed Area: NSM-MBB
Prereq: None

MB&B107 The Science of Human Health: Microbiology and Immunology
Studying the molecular and cellular biology of disease-causing viruses and bacteria, we will survey the basic mechanisms that they deploy to colonize and harm our bodies. We will also learn about the cells and macromolecules that comprise our immune system, how they act in concert to detect and combat disease or, in certain instances, cause autoimmune disease. A case-study approach will be pursued to join these two subjects and to illustrate the complex interplay between pathogens and the immune system that allows us to successfully combat certain diseases, become persistently infected by others, or succumb to debilitating or fatal illnesses.
Offering: Host
Grading: OPT
Credits: 1.00
Gen Ed Area: NSM-MBB
Prereq: None

MB&B111 Introduction to Environmental Toxicology
This course will look at the human health consequences of anthropogenic and natural toxins in the environment. We will examine how chemicals are absorbed, distributed, and detoxified within our bodies and the mechanism of acute and chronic damage to our health. We will explore how toxins travel through the environment and how permissible levels of exposure are decided upon. This naturally leads to a discussion about the perception and management of risk. We will look at case studies relating to industrial pollution, accidents, and contamination of our air, water, and food through the lens of human disease and social cost. Students are asked to think critically about available scientific evidence and form opinions about how much risk is acceptable in our daily lives.
Offering: Host
Grading: A-F
Credits: 1.00
Gen Ed Area: NSM-MBB
Prereq: None

MB&B117 Life in the Cell from a Molecule’s Perspective
What does DNA look like when it is not condensed into chromosomes? How do partners in molecular processes find each other? If a molecular motor "walks," how does it take a step? We will explore these major topics in molecular biophysics by discussing primary scientific literature. Emphasis will be placed on revealing the ways in which our understanding of biological processes can be improved by understanding the underlying physics. Students should have a broad high school science background, familiarity with quantitative and algebraic concepts, and a desire to incorporate quantitative thinking into verbal discourse. Writing is a core element of the course.
Offering: Crosslisting
Grading: A-F
Credits: 1.00
Gen Ed Area: NSM-PHYS
Identical With: PHYS107
Prereq: None

MB&B119 Biology and Chemistry in the Modern World: A Survey of Drugs and Disease
This course will cover a wide range of topics of current interest that are at the intersection of biology and chemistry. In particular, the molecular basis of issues related to drugs and disease will form a focus of the course. Topics to be discussed will include psychoactive and performance-enhancing drugs, mad cow, cancer, viral and bacterial diseases, and the chemistry of foods.
Offering: Host
Grading: A-F
Credits: 1.00
Gen Ed Area: NSM-CHEM
Identical With: CHEM119
Prereq: None

MB&B115 Tiny Organisms with a Big Effect: The Microbiome
With the advent of advanced sequencing technology, we are able to characterize the microflora that lives on and inside of multicellular organisms, including humans. It follows that there are still many unknowns with respect to the function and dynamics of relationships between bacterial communities and their hosts. These bacterial communities, colonizing humans and other organisms with millions of microbes, have captured the interest of the public. Popular news outlets have made the disparate claims that the right human microbiome can act as a panacea and the wrong microbiome is such a calamity that it can destroy an individual's health. This course will look at the true nature of the microbiome, to the extent that current research has revealed. We will discuss both normal and abnormal bacterial community compositions and any related disease states. Similarly, we will cover changes in microbiome composition over time and with respect to host development. In class, we will also consider the microbiomes of other organisms and how the presence and composition of the microbiome relates to disease states and/or life history.
Offering: Crosslisting
Grading: A-F
Credits: 1.00
Gen Ed Area: NSM-BIOL
Identical With: BIOL155
Prereq: None

MB&B160 Biochemical and Molecular Basis of Human Diseases
This general education course will cover the biochemical, molecular, genetic, and cellular aspects of selected human diseases. The basic anatomy of each relevant system will also be covered, along with ethical questions that can arise when addressing each condition. Topics will include sickle cell anemia, diabetes, atherosclerosis, and prion diseases.
Offering: Host
Grading: OPT
Credits: 1.00
Gen Ed Area: NSM-MBB
Prereq: None
MB&B181 Principles of Biology I: Cell Biology and Molecular Basis of Heredity
This course presents an exploration of the contemporary view of the cell and an introduction to the molecules and mechanisms of genetics and gene function. The course will have two major themes. First, we will focus on the central dogma of molecular biology, describing the process of information transfer from genetic code in DNA through protein synthesis and function. Topics include DNA replication and repair, chromosome dynamics, RNA transcription, protein translation, gene regulation, and genomics. Second, we will focus on cell theory and the underlying molecular mechanisms of cellular activity, including cell signaling, energetics, cell motility, and cell cycling. Lectures will stress the experimental basis of conclusions presented and highlight important details and major themes. The course will also emphasize problem solving approaches in cell and molecular biology.
Offering: Host
Grading: A-F
Credits: 1.00
Gen Ed Area: NSM-MBB
Identical With: BIOL181
Prereq: None

MB&B182 Principles of Biology II
This course concerns biological principles as they apply primarily at tissue, organismic, and population levels of organization. Course topics include developmental biology, animal physiology and homeostatic control systems, endocrinology, neurophysiology and the neuronal basis of behavior. Evidence for evolution is reviewed, as are the tenets of Darwin’s theory of evolution by natural selection. The nature and importance of variation among organisms and of stochastic processes in evolution are discussed, as are modern theories of speciation and macroevolution. Finally, the course addresses interactions between organisms and their environments as well as the interactions among organisms in natural communities. Each of the topics of the course is explored from a comparative viewpoint to recognize common principles as well as variations among organisms that indicate evolutionary adaptation to different environments and niches.
Offering: Crosslisting
Grading: OPT
Credits: 1.00
Gen Ed Area: NSM-BIOL
Identical With: BIOL182
Prereq: [MB&B181 or BIOL181]

MB&B191 Principles of Biology I--Laboratory
This laboratory course, to be taken concurrently with MB&B181 or BIOL181, provides direct experience with techniques used in cell biology and molecular biology. These include polymerase chain reaction (PCR), electrophoresis, enzyme assays, microscopy, and spectrophotometry. The lab course is a chance to learn these key techniques firsthand.
Offering: Host
Grading: Cr/U
Credits: 0.50
Gen Ed Area: NSM-MBB
Identical With: BIOL191
Prereq: None

MB&B192 Principles of Biology II--Laboratory
This laboratory course, designed to be taken concurrently with BIOL182 or MB&B182, will introduce students to experimental design, laboratory methods, data analysis, and empirical approaches to developmental biology, physiology, ecology, and evolution. Laboratory exercises use the techniques of electrophysiology, microscopy, computer simulations, and analyses of DNA sequence data. Some exercises will include exploration of physiological processes in living animals.
Offering: Crosslisting
Grading: Cr/U

MB&B194 Principles of Biology II: Advanced Topics
This course provides an optional supplement to the introductory course in physiology, development, evolution, and ecology (BIOL182, which should be taken concurrently). It is designed for highly motivated biology students who seek to enrich their understanding by engaging with current research in an intensive seminar setting. Students in BIOL194 will read and discuss recent journal articles that probe in greater depth some of the subjects covered in BIOL182. Weekly meetings will consist of a short lecture by the professor followed by group discussion of the readings.
Offering: Crosslisting
Grading: Cr/U
Credits: 0.25
Gen Ed Area: NSM-MBB
Identical With: BIOL194
Prereq: BIOL181 or MB&B181

MB&B208 Molecular Biology
This course is a comprehensive survey of the molecules and molecular mechanisms underlying biological processes. It will focus on the cornerstone biological processes of genome replication, gene expression, and protein function. The major biomacromolecules—DNA, RNA, and proteins—will be analyzed to emphasize the principles that define their structure and function. We will also consider how these components interact in larger networks within cells to permit processing of external and internal information during development and discuss how these processes become perturbed in disease states.
Offering: Host
Grading: A-F
Credits: 1.00
Gen Ed Area: NSM-MBB
Identical With: BIOL208
Prereq: ([MB&B181 or BIOL181] AND [BIOL182 or MB&B182])

MB&B209 Research Frontiers in Molecular Biology and Biochemistry
This course of weekly discussions of current research is for students who have completed the MB&B or BIOL introductory series. Discussions will be informal in nature and cover topics of current interest in molecular biology and biochemistry, emphasizing possibilities for future research areas for the students.
Offering: Host
Grading: Cr/U
Credits: 1.00
Gen Ed Area: NSM-MBB
Identical With: BIOL209
Prereq: ([MB&B181 or BIOL181] AND [BIOL182 or MB&B182])

MB&B210 Genomics: Modern Genetics, Bioinformatics, and the Human Genome Project
Genetics has provided a foundation for modern biology. We will explore the classical genetics and go on to consider how genomics has transformed this field. This course is intended to introduce students to the fields of genetics and genomics, which encompass modern molecular genetics, bioinformatics, and the structure, function, and evolution of genomes. We will discuss important new areas of research that have emerged from the genome projects, such as epigenetics, polymorphisms, transgenics, systems biology, stem cell research, and disease mapping. Students will also discuss bioethical issues we face in this new postgenome era.
Offering: Crosslisting
Grading: A-F
Credits: 1.00
Gen Ed Area: NSM-BIOL
Identical With: BIOL210
communicating with neighbors across the membrane barrier. This class will understand the molecular basis for its behavior and function is critical to understand biological function at all levels, from molecular to organismic. The primary goal of this course is to understand how cells function within the context of the multicellular organism or tissue—an environment that cells regulate as well as respond to. We also focus on the process of scientific discovery in the field of cell biology—how do we know what we know? Hence whilst the textbook will provide background reading, we will also discuss original research in class. We will cover cell and organelle structure and function, trafficking, cell adhesion and motility, proliferation, signal transduction, and cell differentiation, and consider how these processes are integrated to generate coherent cell behaviors, or go awry in disease.

Offering: Crosslisting
Grading: A-F
Credits: 1.00
Gen Ed Area: NSM-MBB
Identical With: BIOL212
Prereq: [MB&B181 or BIOL181]

MB&B28 Introductory Medical Biochemistry
This introductory course will focus on the essential concepts of biochemistry important to students interested in the health professions, including the chemical and biological foundations of cellular metabolism and related disease states. Major topics will include the structure and function of biological molecules in the human body (proteins, carbohydrates, fats, nucleic acids, vitamins), enzyme catalysis, cellular signaling, and digestion, absorption, and processing of nutrients for energy and growth.

Offering: Host
Grading: A-F
Credits: 1.00
Gen Ed Area: NSM-MBB
Identical With: BIOL228
Prereq: [MB&B181 or BIOL181] AND CHEM251

MB&B23 Microbiology
This course will study microorganisms in action, as agents of disease, in ecological situations, and as tools for research in molecular biology, genetics, and biochemistry. Particular emphasis will be placed on new ideas in the field.

Offering: Host
Grading: A-F
Credits: 1.00
Gen Ed Area: NSM-MBB
Identical With: BIOL231
Prereq: [MB&B181 or BIOL181] OR [MB&B208 or BIOL208]

MB&B232 Immunology
In this introduction to immunology, particular emphasis will be given to understanding both the innate immune response and its agents as well as the acquired immune response mediated by B and T cells. Cellular and antibody responses in health and disease will be addressed, along with mechanisms of immune evasion by pathogens, autoimmune disease, and cancer.

Offering: Host
Grading: A-F
Credits: 1.00
Gen Ed Area: NSM-MBB
Identical With: BIOL232
Prereq: (([MB&B181 or BIOL181] AND [BIOL182 or MB&B182]) OR [MB&B208 or BIOL208])

MB&B237 Signal Transduction
Cells contain elaborate systems for sensing their environment and for communicating with neighbors across the membrane barrier. This class will explore molecular aspects of signal transduction in prokaryotic and eukaryotic cells. Topics will include membrane receptors, GPCRs, kinases, phosphorylation, ubiquitination, calcium signaling, nuclear receptors, quorum sensing, and human sensory systems. We will integrate biochemical functional approaches with structural and biophysical techniques.

Offering: Host
Grading: A-F
Credits: 1.00
Gen Ed Area: NSM-MBB
Identical With: BIOL237
Prereq: [MB&B208 or BIOL208]

MB&B242 Informal Science Education for Elementary School Students II
This service-learning course will focus on designing and implementing original, effective, and engaging science-based lesson plans for elementary age children in an afterschool program setting at five local elementary schools. The classroom component includes writing, testing, and critiquing lesson plans and organizing a once-a-semester event, Science Saturday. Members of the class are required to volunteer weekly, co-lead Science Saturday, complete individual work, and organize meetings for projects outside of class. This course is a continuation of CHEM241.

Offering: Crosslisting
Grading: Cr/U
Credits: 1.00
Gen Ed Area: NSM-MBB
Identical With: CHEM242
Prereq: None

MB&B26 Bioinformatics Programming
This course is an introduction to bioinformatics and programming for students with interest in the life sciences. It introduces problem areas and conceptual frameworks in bioinformatics. The course assumes little or no prior programming experience and will introduce the fundamental concepts and mechanisms of computer programs and examples (e.g., sequence matching and manipulation, database access, output parsing, dynamic programming) frequently encountered in the field of bioinformatics.

Offering: Crosslisting
Grading: A-F
Credits: 0.50
Gen Ed Area: NSM-MBB
Identical With: BIOL265, COMP113, CIS265
Prereq: [MB&B181 or BIOL181]

MB&B266 Bioinformatics
This course is an introduction to bioinformatics for students with interest in the life sciences. The course is similar to BIOL265 but only meets in the second half of the semester (with BIOL265) and is designed for students with programming background, ideally in Python. The course introduces problem areas and conceptual frameworks in bioinformatics and discusses programming approaches used in bioinformatics such as sequence matching and manipulation algorithms using dynamic programming, clustering analysis of gene expression data, analysis of genetic nets using Object Oriented Programming, and sequence analysis using Hidden Markov Models, Regular Expressions, and information theory.

Offering: Crosslisting
Grading: A-F
Credits: 1.00
Gen Ed Area: NSM-MBB
Identical With: BIOL265, COMP113, CIS265
Prereq: [MB&B181 or BIOL181]
the template-dependent processes governing the perpetuation of discrete phenotypes. Topics will include the molecular biology of prions (infectious proteins) and environment-induced alterations in gene expression that may be transmitted to offspring.

Offering: Crosslisting
Grading: A-F
Credits: 1.00
Gen Ed Area: NSM-MBB
Identical With: MB&B506
Prereq: None

MB&B307 Molecular Biophysics Journal Club I
This course includes presentation and active discussion of a series of current research articles in the field of molecular biophysics and biophysical chemistry from journals including but not limited to the Biophysical Journal, Biopolymers, Current Opinion in Structural Biology, Journal of Biomolecular Structure and Dynamics, and the Annual Review of Molecular Biophysics and Biomolecular Structure.

Offering: Crosslisting
Grading: Cr/U
Credits: 0.50
Gen Ed Area: NSM-CHEM
Identical With: CHEMS07, CHEM307, PHYS517, PHYS317, MB&B507
Prereq: None

MB&B308 Molecular Biophysics Journal Club II

Offering: Crosslisting
Grading: Cr/U
Credits: 0.50
Gen Ed Area: NSM-CHEM
Identical With: PHYS518, PHYS318, CHEMS07, CHEM308, MB&B508
Prereq: None

MB&B309 Molecular and Cellular Biophysics
This course is an integrated consideration of the biophysics and biophysical chemistry of biological systems from molecules to cells. The objective is to develop a critical sense of the quantitative data currently being obtained from microscopy to spectroscopy, considering both ensemble and single-molecule experiments, and to gain familiarity and facility with interpretation using mathematical and computational models. Biological systems are inherently complex, and some form of modeling is always involved in developing an explanation of how they work. However, these models typically involve only a few basic constructs (simple harmonic motion, ideal fluids, two-state Ising models, random walks, electrostatic interactions, classical dynamics, rate equations, QM energy levels, distribution functions, and network analysis) and only elementary aspects of linear algebra, calculus, differential equations, and statistics. This course deals with how these constructs are integrated in the framework of Boltzmann statistical mechanics to formulate mathematical models of biological phenomena, how these models are validated and refined, and how they are used to form explanations and make testable predictions. Model systems to be considered include the nucleosome, the ribosome, membrane dynamics and ion channels, molecular devices and motors, prototype signal transduction systems, and regulatory processes. This course is suitable for physics and chemistry students who wish to learn about biological applications and for molecular and cellular biology students to develop skills with quantitative physicochemical modes of inquiry applied to the life sciences.

Offering: Crosslisting
Grading: A-F
Credits: 1.00
MB&B310 Mechanisms of Protein Trafficking Within Eukaryotes
This course surveys the mechanisms of protein trafficking and sorting within eukaryotic cells with an emphasis on the major protein exocytosis pathway.
Offering: Crosslisting
Grading: OPT
Credits: 0.50
Gen Ed Area: None
Identical With: MB&B510
Prereq: [MB&B208 or BIOL208] OR [BIOL212 or MB&B212]

MB&B311 Genomics Analysis
This course is an introduction to genomics and analysis for students with interest in life sciences. It introduces current applications of genomics techniques, covers how to build a genomics workflow, and introduces statistical analyses in R programming language. This course assumes little or no prior programming experience and will provide hands-on experience in taking raw next-generation sequencing data through a custom workflow and ending with analyses in R statistical software.
Offering: Crosslisting
Grading: A-F
Credits: 1.00
Gen Ed Area: NSM-BIOL
Identical With: BIOL310, CIS310
Prereq: [MB&B181 or BIOL181]

MB&B313 Molecular, Proteomic, and Cell Biological Analysis of Telomere Composition and Function
This course will focus on a critical feature of the eukaryotic cell known as the telomere, or linear chromosome end. We will discuss the diverse set of critical molecular mechanisms affected by and involving telomeres including chromosome segregation, cellular aging, meiotic gamete production, and cancer progression. We will also focus on the physical architecture of the telomere, how this architecture dynamically alters in different biological contexts, and the types of molecules known to associate with telomeres in multiple model organisms including yeast and human cells. An emphasis will be placed on experimental strategies used for identifying new components of the telomere complex and for understanding telomere function during normal and diseased cellular states.
Offering: Crosslisting
Grading: A-F
Credits: 0.50
Gen Ed Area: NSM-MBB
Identical With: MB&B513
Prereq: None

MB&B315 The Regulation of Ribosome Biosynthesis
Ribosomes are the large and highly conserved organelles charged with the task of converting the nucleotide-based messages of mRNAs into the polypeptide sequence of proteins. This act of translation is remarkable, not only for its efficiency and fidelity, but also for the sheer complexity of the reaction, including the wide variety of molecules (e.g., mRNAs, tRNAs, rRNAs, proteins, amino acids) that need to be harnessed for its execution. In this course we will investigate the mechanism of translation as well as the biosynthetic pathways that are involved in the synthesis of ribosomes themselves. Both prokaryotic and eukaryotic systems will be considered, including the question of how ribosome biosynthesis, which constitutes a major fraction of the total cellular economy, is regulated in response to changing cellular conditions.
Offering: Host
Grading: A-F
Credits: 1.00
Gen Ed Area: NSM-MBB

MB&B321 Biomedical Chemistry
This course is designed to explore the molecular basis of disease and treatment options. Topics will reflect the importance of chemistry and biochemistry in the advancement of medicine today and will include treatment of metabolic disorders, rational drug design, and mode of drug action. A large portion of the course will be dedicated to learning computer programs used in computational drug design as part of a final drug design project.
Offering: Crosslisting
Grading: A-F
Credits: 1.00
Gen Ed Area: NSM-CHEM
Identical With: CHEM321
Prereq: [CHEM251 AND [CHEM383 or MB&B383]]

MB&B322 Mechanisms of Protein Trafficking Within Prokaryotes
This course surveys the mechanisms of membrane protein topogenesis and protein secretion within E. coli, the quintessential prokaryote, where sophisticated genetic and biochemical analysis has been possible. The course surveys the primary literature with student presentations and a written final examination.
Offering: Crosslisting
Grading: OPT
Credits: 0.50
Gen Ed Area: None
Identical With: MB&B522
Prereq: [MB&B208 or BIOL208] OR [BIOL212 or MB&B212]

MB&B325 Introduction to Biomolecular Structure
This course aims to provide a framework for understanding three-dimensional structures of proteins, nucleic acids, and their complexes. The first half of the course emphasizes structural modules and topological patterns in major classes of proteins and nucleic acids. The second part of the course covers novel structural motifs, such as helix-turn-helix, zinc-finger, and leucine zipper, that are responsible for recognition of specific nucleotide sequences in nucleic acids by proteins. Analysis of structures using tools available on the Web and independent exploration of protein and nucleic acid databases are strongly encouraged.
Offering: Crosslisting
Grading: OPT
Credits: 1.00
Gen Ed Area: NSM-CHEM
Identical With: CHEM325
Prereq: [MB&B181 or BIOL181] OR [MB&B191 or BIOL191]

MB&B328 Topics in Eukaryotic Genetics: Transcription
This half-semester course will follow two principal themes: We will examine the use of genetic methods in current biological research and apply these methods to address questions about the regulation of gene expression in eukaryotes. Our examination of transcriptional regulation will lead us into the related topics of gene organization, chromosome structure, and signal transduction.
Offering: Crosslisting
Grading: A-F
Credits: 0.50
Gen Ed Area: None
Identical With: MB&B528
Prereq: None

MB&B330 Molecular and Cellular Basis of Human Diseases
This course will cover the molecular, genetic, cellular, and biochemical aspects of selected human ailments. Topics will include aging, atherosclerosis, osteoporosis, diabetes, obesity, and Alzheimer's disease.
Offering: Crosslisting
misfolded proteins in the body and in the test-tube. These diseases and discuss the strategies used to detect, identify and study these forms. In the course of discussing the misfolded nature of these proteins, we will understand why a functional, well-folded protein adopts the misfolded amyloid a few. This course will focus on current research in the field that seeks to amyloid fibers, is at the root of several different diseases, including Parkinson’s disease, Alzheimer’s disease, mad cow disease, and type II diabetes to name a few. This course will focus on current research in the field that seeks to understand why a functional, well-folded protein adopts the misfolded amyloid form. In the course of discussing the misfolded nature of these proteins, we will review central elements of protein structure and stability to better understand the protein-folding landscape and the process of misfolding. We will also discuss how the process of misfolding leads to the different diseases and disease pathologies. We will read current literature that studies the molecular nature of these diseases and discuss the strategies used to detect, identify and study these misfolded proteins in the body and in the test-tube.
MB&B381 Physical Chemistry for the Life Sciences
The course is concerned with the basic physicochemical principles and model systems essential to understanding, explaining, and predicting the behavior of biological systems in terms of molecular forces. The course integrates fundamental concepts in thermodynamics, kinetics, and molecular spectroscopy with the structures, functions, and molecular mechanisms of biological processes. The objectives of the course are to (1) familiarize life science students at the advanced undergraduate and beginning graduate level with basic physicochemical laws, theories, and concepts important to the life sciences; (2) provide a working knowledge of mathematical methods useful in life science research; (3) develop a critical perspective on explanation of biological processes and understanding biological systems; and (4) survey the main applications of physical chemistry in the life sciences with an emphasis on spectroscopy and microscopy. Theory, methodology, and biophysical concepts are distributed throughout the course and are presented in the context of case studies including respiration, light harvesting and photosynthesis, ATP hydrolysis, NAD/NADH redox, energy transfer, FRET spectroscopy, with an emphasis on single molecule as well as ensemble experiments and their interpretation.
Offering: Host
Grading: A-F
Credits: 1.00
Gen Ed Area: NSM-MBB
Identical With: MB&B381, CHEM381
Prereq: (CHEM141 AND CHEM142 AND MATH117 AND CHEM251) OR (CHEM143 AND CHEM144 AND MATH121 AND CHEM251)

MB&B382 Practical NMR
This course will cover how a spectrometer works as well as the theory and application of NMR experiments. The topics will include one-dimensional proton and heteronuclear experiments as well as decoupling. The course will begin with how the spectrometer works and how data processing is carried out, as well as how to calibrate the spectrometer and shim the magnet. The one-dimensional TOCSY and NOESY experiments will then be covered. The course will also cover heteronuclear and homonuclear two-dimensional NMR experiments. The experiments will include two-dimensional DQFCOSY, TOCSY, NOESY, and ROESY proton experiments as well as heteronuclear experiments to correlate the chemical shifts of protons and heteronuclei, as well as how to select heteronuclear resonances on the basis of the number of directly attached protons.
The course will consist of lectures as well as a laboratory component in which the Mercury 300 will be used to obtain data that will be analyzed using the methods developed in the lecture part of the course. This course is specifically aimed at general users of the Mercury spectrometer who wish to learn how to carry out and analyze advanced one-dimensional and two-dimensional NMR experiments.
Offering: Crosslisting
Grading: A-F
Credits: 1.00
Gen Ed Area: NSM-CHEM
Identical With: CHEM382
Prereq: None

MB&B383 Biochemistry
This introductory course to the principles and concepts of contemporary biochemistry introduces both the biological and chemical perspectives. The major themes will be the structure of proteins and the basis of enzymatic activity, cellular metabolism and the generation and storage of metabolic energy, and general principles of the biosynthesis of cellular components.
Offering: Crosslisting
Grading: A-F
Credits: 1.00
Gen Ed Area: NSM-CHEM
Identical With: CHEM383

MB&B385 Advanced Biochemistry: Enzyme Kinetics
This course presents an introduction to the theory and practice of enzyme kinetics, both steady-state and presteady-state.
Offering: Crosslisting
Grading: A-F
Credits: 0.50
Gen Ed Area: NSM-CHEM
Identical With: CHEM385
Prereq: [CHEM383 or MB&B383]

MB&B386 Biological Thermodynamics
This course is addressed to undergraduate and graduate students interested in biological chemistry and structural biology. The course presents thermodynamic methods currently used to relate structure to function in biological molecules. Topics include binding curves, chemical ligand linkages, binding polynomial, cooperativity, site-specific binding processes, and allosteric effects. Several models for allosteric systems, such as the Monod-Wyman-Changeux model, the induced-fit model, and the Pauling model, are analyzed in detail. Applications of these models are illustrated for functional regulation of respiratory proteins and for protein-nucleic-acid complexes involved in control of gene expression.
Offering: Crosslisting
Grading: A-F
Credits: 1.00
Gen Ed Area: NSM-CHEM
Identical With: CHEM386
Prereq: [MATH121 AND MATH122]

MB&B387 Enzyme Mechanisms
The chemical mechanisms involved in the action of a series of typical enzymes will be considered.
Offering: Crosslisting
Grading: A-F
Credits: 0.50
Gen Ed Area: NSM-CHEM
Identical With: CHEM387
Prereq: [CHEM383 or MB&B383]

MB&B394 Advanced Laboratory in Molecular Biology and Genetics
This course is designed to familiarize students with current research techniques in molecular biology, biochemistry, and genetics. A variety of methods and approaches will be applied in a series of short projects, primarily using E. coli and Saccharomyces cerevisiae (budding yeast) as model systems. Students will gain hands-on experience employing recombinant DNA, microbiology, protein biochemistry, and other methods to answer basic research questions. This course provides excellent preparation for students planning to conduct independent research at the undergraduate level (MB&B401/402) and beyond.
Offering: Host
Grading: A-F
Credits: 1.00
Gen Ed Area: NSM-MBB
Prereq: [MB&B208 or BIOL208]

MB&B395 Structural Biology Laboratory
One of the major catalysts of the revolution in biology that is now under way is our current ability to determine the physical properties and three-dimensional structures of biological molecules by x-ray diffraction, nuclear magnetic resonance (NMR) spectroscopy, and other spectroscopic methods. This course is designed to familiarize students with current research techniques in biochemistry and molecular biophysics. Students will perform spectroscopic investigations on a protein that they have isolated and characterized using typical biochemical techniques, such as electrophoresis, enzyme extraction, and column chromatography. The course will provide hands-on experience with spectroscopic methods such as NMR, fluorescence, UV-Vis absorption, and
Raman as well as bioinformatic computational methods. All of these methods will be applied to the study of biomolecular structure and energetics. This course provides a broad knowledge of laboratory techniques valuable for independent research at the undergraduate level and beyond.

Offering: Host
Grading: A-F
Credits: 1.00
Gen Ed Area: NSM-MBB
Identical With: PHYS395, CHEM395
Prereq: ([MB&B208 or BIOL208] AND CHEM141 AND CHEM142) OR ([MB&B208 or BIOL208] AND CHEM143 AND CHEM144)

MB&B400 Professional Development and Graduate School Preparation Seminar
The objectives of this course are (1) to build a supportive cohort that will help students sustain their goals when they enter graduate school and (2) to provide students with skills they will need to succeed in graduate school. Students will work on writing, presentation, and discussion skills. This will be done by reading classic books on writing, critiquing the ability of different figures and graphs to convey information, reading and discussing scientific papers, and giving research presentations.

Offering: Crosslisting
Grading: A-F
Credits: 0.50
Gen Ed Area: NSM-EES
Identical With: PHYS400, NS&B400, CIS400, PSYC400
Prereq: None

MB&B401 Individual Tutorial, Undergraduate
Topic to be arranged in consultation with the tutor.
Offering: Host
Grading: OPT

MB&B402 Individual Tutorial, Undergraduate
Topic to be arranged in consultation with the tutor.
Offering: Host
Grading: OPT

MB&B407 Senior Tutorial (downgraded thesis)
Downgraded Senior Thesis Tutorial - Project to be arranged in consultation with the tutor. Only enrolled in through the Honors Coordinator.
Offering: Host
Grading: A-F

MB&B408 Senior Tutorial (downgraded thesis)
Downgraded Senior Thesis Tutorial - Project to be arranged in consultation with the tutor. Only enrolled in through the Honors Coordinator.
Offering: Host
Grading: A-F

MB&B409 Senior Thesis Tutorial
Topic to be arranged in consultation with the tutor.
Offering: Host
Grading: OPT

MB&B410 Senior Thesis Tutorial
Topic to be arranged in consultation with the tutor.
Offering: Host
Grading: OPT

MB&B411 Group Tutorial, Undergraduate
Topic to be arranged in consultation with the tutor.
Offering: Host
Grading: OPT

MB&B412 Group Tutorial, Undergraduate
Topic to be arranged in consultation with the tutor.
Offering: Host

MB&B421 Undergraduate Research, Science
Individual research projects for undergraduate students supervised by faculty members.
Offering: Host
Grading: OPT

MB&B422 Undergraduate Research, Science
Individual research projects for undergraduate students supervised by faculty members.
Offering: Host
Grading: OPT

MB&B423 Advanced Research Seminar, Undergraduate
Advanced research tutorial; project to be arranged in consultation with the tutor.
Offering: Host
Grading: OPT

MB&B424 Advanced Research Seminar, Undergraduate
Advanced research tutorial; project to be arranged in consultation with the tutor.
Offering: Host
Grading: OPT

MB&B425 Education in the Field, Undergraduate
Students must consult with the department and class dean in advance of undertaking education in the field for approval of the nature of the responsibilities and method of evaluation.
Offering: Host
Grading: OPT

MB&B426 Education in the Field, Undergraduate
Students must consult with the department and class dean in advance of undertaking education in the field for approval of the nature of the responsibilities and method of evaluation.
Offering: Host
Grading: OPT

MB&B427 Teaching Apprentice Tutorial
The teaching apprentice program offers undergraduate students the opportunity to assist in teaching a faculty member’s course for academic credit.
Offering: Host
Grading: OPT

MB&B428 Teaching Apprentice Tutorial
The teaching apprentice program offers undergraduate students the opportunity to assist in teaching a faculty member’s course for academic credit.
Offering: Host
Grading: OPT

MB&B429 Education in the Field, Undergraduate
Students must consult with the department and class dean in advance of undertaking education in the field for approval of the nature of the responsibilities and method of evaluation.
Offering: Host
Grading: OPT

MB&B430 Education in the Field, Undergraduate
Students must consult with the department and class dean in advance of undertaking education in the field for approval of the nature of the responsibilities and method of evaluation.
Offering: Host
Grading: OPT

MB&B431 Advanced Research Seminar, Undergraduate
Advanced research tutorial; project to be arranged in consultation with the tutor.
Offering: Host
Grading: OPT

MB&B432 Teaching Apprentice Tutorial
The teaching apprentice program offers undergraduate students the opportunity to assist in teaching a faculty member’s course for academic credit.
Offering: Host
Grading: OPT

MB&B433 Teaching Apprentice Tutorial
The teaching apprentice program offers undergraduate students the opportunity to assist in teaching a faculty member’s course for academic credit.
Offering: Host
Grading: OPT

MB&B434 Education in the Field, Undergraduate
Students must consult with the department and class dean in advance of undertaking education in the field for approval of the nature of the responsibilities and method of evaluation.
Offering: Host
Grading: OPT

MB&B435 Education in the Field, Undergraduate
Students must consult with the department and class dean in advance of undertaking education in the field for approval of the nature of the responsibilities and method of evaluation.
Offering: Host
Grading: OPT

MUSC500, PHYS500, E&ES500, CHEM500, BIOL500, MATH500, ASTR500, PSYC500
MB&B501 Individual Tutorial, Graduate
Topic to be arranged in consultation with the tutor.
Offering: Host
Grading: OPT

MB&B502 Individual Tutorial, Graduate
Topic to be arranged in consultation with the tutor.
Offering: Host
Grading: OPT

MB&B503 Selected Topics, Graduate Sciences
Topic to be arranged in consultation with the tutor. A seminar primarily concerned with papers taken from current research publications designed for, and required of, graduate students.
Offering: Host
Grading: OPT

MB&B504 Selected Topics, Graduate Sciences
Topic to be arranged in consultation with the tutor. A seminar primarily concerned with papers taken from current research publications designed for, and required of, graduate students.
Offering: Host
Grading: OPT

MB&B505 Enzymology of DNA Damage and Repair
Students in this course will learn about the sources and consequences of DNA damage and the biochemical mechanisms responsible for DNA repair. Course content will include lectures, student presentations, and discussion of current literature on DNA damage, repair and mutagenesis, with strong emphasis on protein structure-function and enzyme kinetics, as well as diseases associated with defective DNA repair.
Offering: Crosslisting
Grading: A-F
Credits: 1.00
Gen Ed Area: NSM-MBB
Identical With: MB&B305
Prereq: MB&B208

MB&B506 Epigenetics
Basic genetics states that individuals with different DNA sequences express different traits. However, a large number of permanent and heritable changes to cells and organisms occur in the absence of changes to DNA sequence. Such epigenetic mechanisms explain a variety of disparate observations, including the ability of a zygote to develop into dozens of distinct cell types in multicellular organisms using one common DNA blueprint, the observation that grandchildren of individuals subject to famine have higher rates of metabolic defects, and the ability of neurons to mediate formation of long-term memories. In this course we will use a variety of examples from cell biology and genetics to examine the template-dependent processes governing the perpetuation of discrete phenotypes. Topics will include the molecular biology of prions (infectious proteins) and environment-induced alterations in gene expression that may be transmitted to offspring.
Offering: Host
Grading: A-F
Credits: 1.00
Gen Ed Area: NSM-MBB
Identical With: MB&B306
Prereq: None

MB&B507 Molecular Biophysics Journal Club I
This course includes presentation and active discussion of a series of current research articles in the field of molecular biophysics and biophysical chemistry from journals including but not limited to the Biophysical Journal, Biopolymers, Current Opinion in Structural Biology, Journal of Biomolecular Structure and Dynamics, and the Annual Review of Molecular Biophysics and Biomolecular Structure.
Offering: Crosslisting
Grading: Cr/U
Credits: 0.50
Gen Ed Area: NSM-CHEM
Identical With: CHEMS07, CHEMS08, MB&B307, PHYS517, PHYS518
Prereq: None

MB&B508 Molecular Biophysics Journal Club II
Offering: Crosslisting
Grading: Cr/U
Credits: 0.50
Gen Ed Area: NSM-CHEM
Identical With: PHYS518, PHYS518, CHEMS08, CHEMS09, MB&B308
Prereq: None

MB&B509 Molecular and Cellular Biophysics
This course is an integrated consideration of the biophysics and biophysical chemistry of biological systems from molecules to cells. The objective is to develop a critical sense of the quantitative data currently being obtained from microscopy to spectroscopy, considering both ensemble and single-molecule experiments, and to gain familiarity and facility with interpretation using mathematical and computational models. Biological systems are inherently complex, and some form of modeling is always involved in developing an explanation of how they work. However, these models typically involve only a few basic constructs (simple harmonic motion, ideal fluids, two-state Ising models, random walks, electrostatic interactions, classical dynamics, rate equations, QM energy levels, distribution functions, and network analysis) and only elementary aspects of linear algebra, calculus, differential equations, and statistics. This course deals with how these constructs are integrated in the framework of Boltzmann statistical mechanics to formulate mathematical models of biological phenomena, how these models are validated and refined, and how they are used to form explanations and make testable predictions. Model systems to be considered include the nucleosome, the ribosome, membrane dynamics and ion channels, molecular devices and motors, prototype signal transduction systems, and regulatory processes. This course is suitable for physics and chemistry students who wish to learn about biological applications and for molecular and cellular biology students to develop skills with quantitative physicochemical modes of inquiry applied to the life sciences.
Offering: Crosslisting
Grading: A-F
Credits: 1.00
Gen Ed Area: NSM-CHEM
Identical With: CHEMS09, PHYS539, PHYS539, MB&B309, CHEMS09
Prereq: (CHEM251 AND CHEM252)

MB&B510 Mechanisms of Protein Trafficking Within Eukaryotes
This course surveys the mechanisms of protein trafficking and sorting within eukaryotic cells with an emphasis on the major protein exocytosis pathway.
Offering: Host
Grading: OPT
Credits: 0.50
Gen Ed Area: None
Identical With: MB&B310
Prereq: [MB&B208 or BIOL208] OR [BIOL212 or MB&B212]

MB&B511 Group Tutorial, Graduate
Topic to be arranged in consultation with the tutor.
Course will also cover other important DNA structural motifs such as curved or bent DNA as found in A-tracts and the relevance of these structures in promoter recognition and gene expression. Important RNA structures, such as ribozymes and pseudoknots, will be discussed. We will also discuss the significance of DNA structural motifs in eukaryotic genomes and the application of bioinformatic tools to search for these motifs.

Offering: Host
Grading: OPT
Credits: 0.50
Gen Ed Area: None
Prereq: None

M&B&B522 Mechanisms of Protein Trafficking Within Prokaryotes
This course surveys the mechanisms of membrane protein topogenesis and protein secretion within E. coli, the quintessential prokaryote, where sophisticated genetic and biochemical analysis has been possible. The course surveys the primary literature with student presentations and a written final examination.

Offering: Host
Grading: OPT
Credits: 0.50
Gen Ed Area: None
Prereq: None
Identical With: MB&B322

M&B&B523 Receptors, Channels, and Pumps: Advanced Topics in Membrane Protein Structure and Function
Membrane proteins constitute one-third of all cellular proteins and one-half of current drug targets, but our understanding of their structure and function has been limited in the past by technological obstacles. In spite of this, the past 10 years have yielded a wealth of new membrane protein structures that have helped to uncover the mechanistic underpinnings of many important cellular processes. This class will examine some of the new insights gained through the various techniques of modern structural biology. We will start with a general review of membrane properties, structural techniques (e.g., x-ray crystallography, EM, NMR), and protein structure analysis. We will then look at common structural motifs and functional concepts illustrated by different classes of membrane proteins. Students will read primary literature sources and learn how to gauge the quality and limitations of published membrane protein structures. These tools will be generally applicable to evaluating soluble protein structures as well.

Offering: Crosslisting
Grading: A-F
Credits: 1.00
Gen Ed Area: None
Identical With: MB&B315
Prereq: [MB&B208 or BIOL208]

M&B&B515 The Regulation of Ribosome Biosynthesis
Ribosomes are the large and highly conserved organelles charged with the task of converting the nucleotide-based messages of mRNAs into the polypeptide sequence of proteins. This act of translation is remarkable, not only for its efficiency and fidelity, but also for the sheer complexity of the reaction, including the wide variety of molecules (e.g., mRNAs, tRNAs, rRNAs, proteins, amino acids) that need to be harnessed for its execution. In this course we will investigate the mechanism of translation as well as the biosynthetic pathways that are involved in the synthesis of ribosomes themselves. Both prokaryotic and eukaryotic systems will be considered, including the question of how ribosome biosynthesis, which constitutes a major fraction of the total cellular economy, is regulated in response to changing cellular conditions.

Offering: Crosslisting
Grading: A-F
Credits: 1.00
Gen Ed Area: None
Identical With: MB&B315
Prereq: [MB&B208 or BIOL208]

M&B&B519 Structural Mechanisms of Protein-Nucleic Acid Interactions
This course focuses on recent advances in the understanding of the structural basis of the recognition of nucleic acids by proteins. Macromolecular systems to be discussed include site-specific DNA endonucleases, topoisomerases, the histone fold, helicases, site-specific recombinases, nuclear RNA-protein complexes, tRNA-binding proteins, and the ribosome.

Offering: Crosslisting
Grading: OPT
Credits: 0.50
Gen Ed Area: None
Identical With: CHEM519
Prereq: (CHEM251 AND CHEM252)

M&B&B520 Topics in Nucleic Acid Structure
This course focuses on the principles of nucleic acid structure. The scope of this course is to go beyond the common DNA structures such as B-DNA and A-DNA helical structures. The course will concentrate on other DNA structural motifs such as branched DNA, supercoiled DNA, triplex DNA, and quadruplex DNA. Physical characterization of these structures as well as the functional implication of these structures (in terms of DNA replication, transcription, telomerization, etc.) will be discussed extensively. Discussion will also center on the forces that stabilize these structures, such as H-bonding and stacking interactions. The course will also cover other important DNA structural motifs such as curved or bent DNA as found in A-tracts and the relevance of these structures in promoter recognition and gene expression. Important RNA structures, such as ribozymes and pseudoknots, will be discussed. We will also discuss the significance of DNA structural motifs in eukaryotic genomes and the application of bioinformatic tools to search for these motifs.

Offering: Host
Grading: OPT
Credits: 0.50
Gen Ed Area: None
Prereq: None

M&B&B528 Topics in Eukaryotic Genetics: Transcription
This half-semester course will follow two principal themes: We will examine the use of genetic methods in current biological research and apply these methods to address questions about the regulation of gene expression in eukaryotes. Our examination of transcriptional regulation will lead us into the related topics of gene organization, chromosome structure, and signal transduction.

Offering: Host
Grading: A-F
Credits: 0.50
Gen Ed Area: None
Identical With: MB&B328
Prereq: None

M&B&B530 Molecular and Cellular Basis of Human Diseases
This course will cover the molecular, genetic, cellular, and biochemical aspects of selected human ailments. Topics will include aging, atherosclerosis, osteoporosis, diabetes, obesity, and Alzheimer’s disease.
pathologies. We will read current literature that studies the molecular nature of how the process of misfolding leads to the different diseases and disease the protein-folding landscape and the process of misfolding. We will also discuss review central elements of protein structure and stability to better understand form. In the course of discussing the misfolded nature of these proteins, we will understand why a functional, well-folded protein adopts the misfolded amyloid a few. This course will focus on current research in the field that seeks to characterize molecular behavior as it actually occurs, as opposed to averaging of stochastic behavior at a single-cell resolution, thus permitting researchers to observe regulatory networks. An overarching theme is how genomes encode and execute regulatory programs as revealed by a global systems biology approach in modern genomics research.

Offering: Host
Grading: A-F
Credits: 1.00
Gen Ed Area: None
Identical With: MB&B330
Prereq: [MB&B208 or BIOL208] OR [CHEM383 or MB&B383]

MB&B533 Gene Regulation
This course aims to develop a genome perspective on transcriptional gene regulation. The genome sequence, now completed in a number of organisms, is described as a blueprint for development. More than simply a parts list (i.e., genes), this blueprint is an instruction manual as well (i.e., regulatory code). A next critical phase of the genome project is understanding the genetic and epigenetic regulatory codes that operate during development. Through a combination of lectures and discussion of primary literature, this course will explore current topics on promoters and transcription factors, chromatin structure, regulatory RNA, chromosomal regulatory domains, and genetic regulatory networks. An overarching theme is how genomes encode and execute regulatory programs as revealed by a global systems biology approach in modern genomics research.

Offering: Host
Grading: A-F
Credits: 1.00
Gen Ed Area: None
Identical With: BIOL533, BIOL333, MB&B333
Prereq: [BIOL182 or MB&B182]

MB&B534 Stochastic Biology: Randomness and Order in Gene Regulation
While much of biology is discussed with assumptions of “determinism” (e.g., the cell is instructed to express a transcription factor that activates a downstream gene in a deterministic and entirely predictable way) and “homogeneity” (e.g., a population of cells all behaving synchronously in the same way), there is a growing appreciation that many biological outcomes are, in fact, statistical phenomena and stochastic in nature. In this half-credit module, we will discuss stochastic behavior in biology from the perspective of gene expression. A focus will be on emerging molecular and cellular techniques that enable observation of stochastic behavior at a single-cell resolution, thus permitting researchers to characterize molecular behavior as it actually occurs, as opposed to averaging a behavior across a population of otherwise diverse individuals. Insights on stochastic behaviors have far-reaching implications in biology, challenging long-held perspectives on transcription, replication, signal transduction, enzymatics, disease states (such as cancer), stems cells, cell differentiation, aging, and adaptive evolution. This course will focus primarily on one of these: stochastic behavior in transcription and chromosome dynamics and its implications to understanding cell and tissue behavior.

Offering: Host
Grading: A-F
Credits: 0.50
Gen Ed Area: NSM-MBB
Identical With: MB&B334
Prereq: None

MB&B535 Protein Folding: From Misfolding to Disease
Amyloidogenesis, the process by which proteins and peptides misfold to form amyloid fibers, is at the root of several different diseases, including Parkinson’s disease, Alzheimer’s disease, mad cow disease, and type II diabetes to name a few. This course will focus on current research in the field that seeks to understand why a functional, well-folded protein adopts the misfolded amyloid form. In the course of discussing the misfolded nature of these proteins, we will review central elements of protein structure and stability to better understand the protein-folding landscape and the process of misfolding. We will also discuss how the process of misfolding leads to the different diseases and disease pathologies. We will read current literature that studies the molecular nature of these diseases and discuss the strategies used to detect, identify and study these misfolded proteins in the body and in the test-tube.

Offering: Host
Grading: A-F
Credits: 1.00
Gen Ed Area: NSM-MBB
Identical With: MB&B335, CHEM535, CHEM335
Prereq: MB&B208 OR MB&B325

MB&B543 The Hidden World: Microscopy and Its Central Role in Cell and Molecular Biology
This class will examine fundamental and cutting-edge imaging tools that are used to visualize cellular structures and processes. The course objective is to teach both the physical mechanics underlying how a microscope achieves magnification and resolution and how progressively more sophisticated imaging tools have consistently facilitated major advancements in our understanding of cell and molecular biological events.

Offering: Host
Grading: A-F
Credits: 0.50
Gen Ed Area: NSM-MBB
Prereq: MB&B208

MB&B549 Advanced Research Seminar, Graduate
Advanced research tutorial; project to be arranged in consultation with the tutor.

Offering: Host
Grading: OPT

MB&B550 Advanced Research Seminar, Graduate
Advanced research tutorial; project to be arranged in consultation with the tutor.

Offering: Host
Grading: OPT

MB&B557 Research Seminars in Molecular Biology
This seminar course comprises weekly one-hour formal presentations by MB&B Department graduate students about their research projects. The presentations include background information and rationale of the project, description of research approaches and methodology, experimental details, results and analysis, including problem-solving activities/plans and future directions. Active discussion among the participants promotes sharing of new ideas and techniques and enhances students’ communication skills.

Offering: Host
Grading: Cr/U
Credits: 0.25
Gen Ed Area: None
Prereq: None

MB&B558 Research Seminars in Molecular Biology
This seminar course comprises weekly one-hour formal presentations by MB&B Department graduate students about their research projects. The presentations include background information and rationale of the project, description of research approaches and methodology, experimental details, results and analysis, including problem-solving activities/plans and future directions. Active discussion among the participants promotes sharing of new ideas and techniques and enhances students’ communication skills.

Offering: Host
Grading: Cr/U
Credits: 0.25
Gen Ed Area: None
Prereq: None

MB&B575 The Cell-Division Cycle and Cancer
This course will cover a broad range of topics that are related to the process of cell division. We will discuss how the cell cycle is executed and regulated in a variety of eukaryotic systems. Major consideration will be applied to discussions of cancer and the defects in cell-division regulation that underlie
This disease. Some of the topics include growth factors, signaling pathways, apoptosis, cyclin-dependent kinases as cell-cycle regulators, transcriptional and posttranscriptional control of cell-cycle genes, DNA replication, DNA damage checkpoints, and tumor suppressors.

Offering: Host
Grading: A-F
Credits: 1.00
Gen Ed Area: None
Identical With: MB&B375
Prereq: None

MB&B577 Advanced Genetics
This course will focus on classical genetics, a discipline that grew from a desire to explain how adaptive traits are passed from generation to generation. Special emphasis will be placed on model organism genetics and on understanding how classical genetic analysis, in conjunction with the analysis of cellular and chromosome behavior, led to key discoveries about the nature of the gene, DNA, RNA, protein, and cellular function.

Offering: Crosslisting
Grading: A-F
Credits: 1.00
Gen Ed Area: NSM-MBB
Identical With: MB&B377
Prereq: None

MB&B581 Physical Chemistry for the Life Sciences
The course is concerned with the basic physicochemical principles and model systems essential to understanding, explaining, and predicting the behavior of biological systems in terms of molecular forces. The course integrates fundamental concepts in thermodynamics, kinetics, and molecular spectroscopy with the structures, functions, and molecular mechanisms of biological processes. The objectives of the course are to (1) familiarize life science students at the advanced undergraduate and beginning graduate level with basic physicochemical laws, theories, and concepts important to the life sciences; (2) provide a working knowledge of mathematical methods useful in life science research; (3) develop a critical perspective on explanation of biological processes and understanding biological systems; and (4) survey the main applications of physical chemistry in the life sciences with an emphasis on spectroscopy and microscopy. Theory, methodology, and biophysical concepts are distributed throughout the course and are presented in the context of case studies including respiration, light harvesting and photosynthesis, ATP hydrolysis, NAD/NADH redox, energy transfer, FRET spectroscopy, with an emphasis on single molecule as well as ensemble experiments and their interpretation.

Offering: Crosslisting
Grading: A-F
Credits: 1.00
Gen Ed Area: NSM-MBB
Identical With: CHEM381, MB&B381
Prereq: (CHEM141 AND CHEM142 AND MATH117 AND CHEM251) OR (CHEM143 AND CHEM144 AND MATH121 AND CHEM251)

MB&B585 Seminar in Molecular Biology
This course involves presentation and discussion of recent literature in the field of molecular and cellular biology.

Offering: Host
Grading: OPT
Credits: 0.25
Gen Ed Area: None
Identical With: MB&B286
Prereq: None

MB&B587 Seminar in Biological Chemistry
This course involves weekly presentations and discussions based on current research.

Offering: Crosslisting
Grading: Cr/U
Credits: 0.25
Gen Ed Area: None
Identical With: CHEM587
Prereq: (CHEM383 or MB&B383 or CHEM325 or MB&B325 or MB&B208) OR (CHEM383 or MB&B383)

MB&B588 Seminar in Biological Chemistry
This course involves weekly presentations and discussions based on current research.

Offering: Crosslisting
Grading: Cr/U
Credits: 0.25
Gen Ed Area: None
Identical With: CHEM588
Prereq: (CHEM383 or MB&B383 or CHEM325 or MB&B325 or MB&B208) OR (CHEM383 or MB&B383)